Yanqiu Sun, Jian Liu, Mingyu He, Dan Huang, Yuan Wang
{"title":"上睑下垂:类风湿关节炎临床治疗的新策略。","authors":"Yanqiu Sun, Jian Liu, Mingyu He, Dan Huang, Yuan Wang","doi":"10.2147/JIR.S523410","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that can lead to joint deformities, functional loss, and a significant reduction in patients' quality of life. It also imposes a considerable medical and socio-economic burden. Iron-induced cell death, or ferroptosis, is a unique form of programmed cell death characterized by dysregulated iron metabolism and the accumulation of lipid peroxides resulting from increased reactive oxygen species (ROS) and reduced activity of glutathione peroxidase 4 (GPX4). The accumulation of lipid peroxides can cause cellular damage, promotes inflammatory responses and joint destruction. This process not only plays a crucial role in the pathogenesis of RA, but also provides new therapeutic targets for its treatment. In this review, we summarize the regulatory mechanisms of ferroptosis in the pathogenesis of RA. These include its roles in regulating oxidative stress and lipid peroxidation, inhibiting the abnormal proliferation of synovial fibroblasts (FLSs), preventing cartilage erosion, restoring immune homeostasis and inflammatory responses, and other aspects. Finally, we also discuss the potential clinical applications, and future prospects of ferroptosis-based therapies for RA treatment.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"6529-6541"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ferroptosis: New Strategies for Clinical Treatment of Rheumatoid Arthritis.\",\"authors\":\"Yanqiu Sun, Jian Liu, Mingyu He, Dan Huang, Yuan Wang\",\"doi\":\"10.2147/JIR.S523410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that can lead to joint deformities, functional loss, and a significant reduction in patients' quality of life. It also imposes a considerable medical and socio-economic burden. Iron-induced cell death, or ferroptosis, is a unique form of programmed cell death characterized by dysregulated iron metabolism and the accumulation of lipid peroxides resulting from increased reactive oxygen species (ROS) and reduced activity of glutathione peroxidase 4 (GPX4). The accumulation of lipid peroxides can cause cellular damage, promotes inflammatory responses and joint destruction. This process not only plays a crucial role in the pathogenesis of RA, but also provides new therapeutic targets for its treatment. In this review, we summarize the regulatory mechanisms of ferroptosis in the pathogenesis of RA. These include its roles in regulating oxidative stress and lipid peroxidation, inhibiting the abnormal proliferation of synovial fibroblasts (FLSs), preventing cartilage erosion, restoring immune homeostasis and inflammatory responses, and other aspects. Finally, we also discuss the potential clinical applications, and future prospects of ferroptosis-based therapies for RA treatment.</p>\",\"PeriodicalId\":16107,\"journal\":{\"name\":\"Journal of Inflammation Research\",\"volume\":\"18 \",\"pages\":\"6529-6541\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inflammation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/JIR.S523410\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S523410","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Ferroptosis: New Strategies for Clinical Treatment of Rheumatoid Arthritis.
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that can lead to joint deformities, functional loss, and a significant reduction in patients' quality of life. It also imposes a considerable medical and socio-economic burden. Iron-induced cell death, or ferroptosis, is a unique form of programmed cell death characterized by dysregulated iron metabolism and the accumulation of lipid peroxides resulting from increased reactive oxygen species (ROS) and reduced activity of glutathione peroxidase 4 (GPX4). The accumulation of lipid peroxides can cause cellular damage, promotes inflammatory responses and joint destruction. This process not only plays a crucial role in the pathogenesis of RA, but also provides new therapeutic targets for its treatment. In this review, we summarize the regulatory mechanisms of ferroptosis in the pathogenesis of RA. These include its roles in regulating oxidative stress and lipid peroxidation, inhibiting the abnormal proliferation of synovial fibroblasts (FLSs), preventing cartilage erosion, restoring immune homeostasis and inflammatory responses, and other aspects. Finally, we also discuss the potential clinical applications, and future prospects of ferroptosis-based therapies for RA treatment.
期刊介绍:
An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.