Katarzyna Ewa Sokolowska, Jacek Antoniewski, Marta Sobalska-Kwapis, Dominik Strapagiel, Wojciech Marciniak, Jan Lubiński, Tomasz Kazimierz Wojdacz
{"title":"在暴露于这种毒物水平的三个队列中,砷暴露相关甲基化变化的协同效应。","authors":"Katarzyna Ewa Sokolowska, Jacek Antoniewski, Marta Sobalska-Kwapis, Dominik Strapagiel, Wojciech Marciniak, Jan Lubiński, Tomasz Kazimierz Wojdacz","doi":"10.1007/s00420-025-02147-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The results of studies assessing impact of arsenic exposure on methylome are to large extent inconsistent. To contribute to understanding of effect of arsenic exposure on methylome of the exposed cells, we assess the impact of low-level arsenic exposure on methylome of blood cells in three cohorts of exposed individuals.</p><p><strong>Methods: </strong>The Infinium MethylationEPIC array (Illumina Inc.) was used for genome-wide methylation profiling and robust linear regression to identify arsenic-related methylation changes in blood cells from healthy individuals with a 12-year cancer-free follow-up and breast cancer patients, sampled on average 4.29 years before diagnosis, as well as methylomics data from cord blood samples of Biomarkers of Exposure to Arsenic cohort.</p><p><strong>Results: </strong>Our analysis identified a 2,453 arsenic-associated methylation changes in blood from healthy individuals, 9,662 in breast cancer patients and 6,745 in cord blood samples. Similarly to previous studies methylation changes that we identified in each cohort, overlapped only to some extent. However, molecular processes linked to identified methylation changes were very similar in each of the cohorts. And included pathways that could be clearly associated with the adverse effects of arsenic exposure and specifically cancer in the cohort of cancer patients. Moreover, the genomic regions harboring identified in each cohort methylation changes were similar and predominantly included regions participating in regulation of gene transcription.</p><p><strong>Conclusion: </strong>Overall, our findings show that specificity of arsenic related methylation changes is low but the impact of these changes on cell physiology is very similar across three cohorts we studded.</p>","PeriodicalId":13761,"journal":{"name":"International Archives of Occupational and Environmental Health","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergic effect of arsenic exposure related methylation changes in three cohorts exposed to levels of this toxicant.\",\"authors\":\"Katarzyna Ewa Sokolowska, Jacek Antoniewski, Marta Sobalska-Kwapis, Dominik Strapagiel, Wojciech Marciniak, Jan Lubiński, Tomasz Kazimierz Wojdacz\",\"doi\":\"10.1007/s00420-025-02147-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The results of studies assessing impact of arsenic exposure on methylome are to large extent inconsistent. To contribute to understanding of effect of arsenic exposure on methylome of the exposed cells, we assess the impact of low-level arsenic exposure on methylome of blood cells in three cohorts of exposed individuals.</p><p><strong>Methods: </strong>The Infinium MethylationEPIC array (Illumina Inc.) was used for genome-wide methylation profiling and robust linear regression to identify arsenic-related methylation changes in blood cells from healthy individuals with a 12-year cancer-free follow-up and breast cancer patients, sampled on average 4.29 years before diagnosis, as well as methylomics data from cord blood samples of Biomarkers of Exposure to Arsenic cohort.</p><p><strong>Results: </strong>Our analysis identified a 2,453 arsenic-associated methylation changes in blood from healthy individuals, 9,662 in breast cancer patients and 6,745 in cord blood samples. Similarly to previous studies methylation changes that we identified in each cohort, overlapped only to some extent. However, molecular processes linked to identified methylation changes were very similar in each of the cohorts. And included pathways that could be clearly associated with the adverse effects of arsenic exposure and specifically cancer in the cohort of cancer patients. Moreover, the genomic regions harboring identified in each cohort methylation changes were similar and predominantly included regions participating in regulation of gene transcription.</p><p><strong>Conclusion: </strong>Overall, our findings show that specificity of arsenic related methylation changes is low but the impact of these changes on cell physiology is very similar across three cohorts we studded.</p>\",\"PeriodicalId\":13761,\"journal\":{\"name\":\"International Archives of Occupational and Environmental Health\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Archives of Occupational and Environmental Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00420-025-02147-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Archives of Occupational and Environmental Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00420-025-02147-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Synergic effect of arsenic exposure related methylation changes in three cohorts exposed to levels of this toxicant.
Purpose: The results of studies assessing impact of arsenic exposure on methylome are to large extent inconsistent. To contribute to understanding of effect of arsenic exposure on methylome of the exposed cells, we assess the impact of low-level arsenic exposure on methylome of blood cells in three cohorts of exposed individuals.
Methods: The Infinium MethylationEPIC array (Illumina Inc.) was used for genome-wide methylation profiling and robust linear regression to identify arsenic-related methylation changes in blood cells from healthy individuals with a 12-year cancer-free follow-up and breast cancer patients, sampled on average 4.29 years before diagnosis, as well as methylomics data from cord blood samples of Biomarkers of Exposure to Arsenic cohort.
Results: Our analysis identified a 2,453 arsenic-associated methylation changes in blood from healthy individuals, 9,662 in breast cancer patients and 6,745 in cord blood samples. Similarly to previous studies methylation changes that we identified in each cohort, overlapped only to some extent. However, molecular processes linked to identified methylation changes were very similar in each of the cohorts. And included pathways that could be clearly associated with the adverse effects of arsenic exposure and specifically cancer in the cohort of cancer patients. Moreover, the genomic regions harboring identified in each cohort methylation changes were similar and predominantly included regions participating in regulation of gene transcription.
Conclusion: Overall, our findings show that specificity of arsenic related methylation changes is low but the impact of these changes on cell physiology is very similar across three cohorts we studded.
期刊介绍:
International Archives of Occupational and Environmental Health publishes Editorials, Review Articles, Original Articles, and Letters to the Editor. It welcomes any manuscripts dealing with occupational or ambient environmental problems, with a special interest in research at the interface of occupational health and clinical medicine. The scope ranges from Biological Monitoring to Dermatology, from Fibers and Dust to Human Toxicology, from Nanomaterials and Ultra-fine Dust to Night- and Shift Work, from Psycho-mental Distress and Burnout to Vibrations. A complete list of topics can be found on the right-hand side under For authors and editors.
In addition, all papers should be based on present-day standards and relate to:
-Clinical and epidemiological studies on morbidity and mortality
-Clinical epidemiological studies on the parameters relevant to the estimation of health risks
-Human experimental studies on environmental health effects. Animal experiments are only acceptable if relevant to pathogenic aspects.
-Methods for studying the topics mentioned above.