Wahab Hussain, Zhi-Liang Jiang, Yi Liu, Jia-Yi Wang, Talat Bilal Yasoob, Syed Ashiq Hussain, Umm E Laila, Dong-Dong Wu, Xin-Ying Ji, Ya-Long Dang
{"title":"眼及眼病中含有核蛋白相关蛋白的PEST蛋白水解信号研究进展","authors":"Wahab Hussain, Zhi-Liang Jiang, Yi Liu, Jia-Yi Wang, Talat Bilal Yasoob, Syed Ashiq Hussain, Umm E Laila, Dong-Dong Wu, Xin-Ying Ji, Ya-Long Dang","doi":"10.1016/j.exer.2025.110451","DOIUrl":null,"url":null,"abstract":"<p><p>The human visual system is a critical component for understanding the world around us, but it is affected by various eye conditions that lead to visual impairments. More than 2.2 billion people worldwide suffer from vision problems such as macular degeneration, refractive errors, cataracts, and glaucoma. In the field of iridology, essential proteins for maintaining healthy eye activity are often mutated or dysregulated. Clear vision is essential for people, and mutations related to these proteins can significantly impact the prevalence and development of eye disorders. Proteins that are linked to ocular disorders, including the nuclear protein Ras, S-glutathionylation, the human ER1 protein, and the Pest Proteolysis Signal-containing Nuclear Protein (PCNP), were examined in this study. Identifying and studying potential treatment targets and strategies to regulate the function of these proteins is crucial for minimizing the prevalence of eye disorders. PCNP is specifically linked to the development of several eye disorders. The development of clinical strategies to effectively treat ocular disorders will benefit from an understanding of these molecular processes. The main focus of this study was on PCNP because of due to its significant role in the pathophysiology of eye disorders. Understanding the function of this protein is vital, as its dysregulation has been linked with several ocular diseases. It is important to fully understand the roles of these essential proteins to develop effective treatments and preventive measures for ocular problems. This review therefore aims to contribute to advancements in the research, treatment, and management of preventable blindness and vision impairment globally by influencing thoughts on how to target and regulate these prospective remedies.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":" ","pages":"110451"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PEST Proteolysis Signals Containing Nuclear Protein Related Proteins in Eye and Eye Diseases:A Review.\",\"authors\":\"Wahab Hussain, Zhi-Liang Jiang, Yi Liu, Jia-Yi Wang, Talat Bilal Yasoob, Syed Ashiq Hussain, Umm E Laila, Dong-Dong Wu, Xin-Ying Ji, Ya-Long Dang\",\"doi\":\"10.1016/j.exer.2025.110451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human visual system is a critical component for understanding the world around us, but it is affected by various eye conditions that lead to visual impairments. More than 2.2 billion people worldwide suffer from vision problems such as macular degeneration, refractive errors, cataracts, and glaucoma. In the field of iridology, essential proteins for maintaining healthy eye activity are often mutated or dysregulated. Clear vision is essential for people, and mutations related to these proteins can significantly impact the prevalence and development of eye disorders. Proteins that are linked to ocular disorders, including the nuclear protein Ras, S-glutathionylation, the human ER1 protein, and the Pest Proteolysis Signal-containing Nuclear Protein (PCNP), were examined in this study. Identifying and studying potential treatment targets and strategies to regulate the function of these proteins is crucial for minimizing the prevalence of eye disorders. PCNP is specifically linked to the development of several eye disorders. The development of clinical strategies to effectively treat ocular disorders will benefit from an understanding of these molecular processes. The main focus of this study was on PCNP because of due to its significant role in the pathophysiology of eye disorders. Understanding the function of this protein is vital, as its dysregulation has been linked with several ocular diseases. It is important to fully understand the roles of these essential proteins to develop effective treatments and preventive measures for ocular problems. This review therefore aims to contribute to advancements in the research, treatment, and management of preventable blindness and vision impairment globally by influencing thoughts on how to target and regulate these prospective remedies.</p>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\" \",\"pages\":\"110451\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.exer.2025.110451\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2025.110451","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
PEST Proteolysis Signals Containing Nuclear Protein Related Proteins in Eye and Eye Diseases:A Review.
The human visual system is a critical component for understanding the world around us, but it is affected by various eye conditions that lead to visual impairments. More than 2.2 billion people worldwide suffer from vision problems such as macular degeneration, refractive errors, cataracts, and glaucoma. In the field of iridology, essential proteins for maintaining healthy eye activity are often mutated or dysregulated. Clear vision is essential for people, and mutations related to these proteins can significantly impact the prevalence and development of eye disorders. Proteins that are linked to ocular disorders, including the nuclear protein Ras, S-glutathionylation, the human ER1 protein, and the Pest Proteolysis Signal-containing Nuclear Protein (PCNP), were examined in this study. Identifying and studying potential treatment targets and strategies to regulate the function of these proteins is crucial for minimizing the prevalence of eye disorders. PCNP is specifically linked to the development of several eye disorders. The development of clinical strategies to effectively treat ocular disorders will benefit from an understanding of these molecular processes. The main focus of this study was on PCNP because of due to its significant role in the pathophysiology of eye disorders. Understanding the function of this protein is vital, as its dysregulation has been linked with several ocular diseases. It is important to fully understand the roles of these essential proteins to develop effective treatments and preventive measures for ocular problems. This review therefore aims to contribute to advancements in the research, treatment, and management of preventable blindness and vision impairment globally by influencing thoughts on how to target and regulate these prospective remedies.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.