{"title":"重复经颅磁刺激通过Cx3cl1-Cx3cr1轴的gaba能神经元激活诱导阿尔茨海默病的认知恢复","authors":"Yunxiao Kang, Jilun Liu, Yu Wang, Jiaying Wang, Jinyang Wang, Chenming Zhou, Rui Cui, Tianyun Zhang","doi":"10.1111/cpr.70061","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the impact of repetitive transcranial magnetic stimulation (rTMS) on cognitive recovery in Alzheimer's disease (AD) by exploring the role of GABAergic neuron activation and modulation of the Cx3cl1-Cx3cr1 signalling axis. The 5xFAD mouse model was utilised for scRNA-seq analysis to examine changes in gene expression post-rTMS. Microglial phagocytic activity, amyloid plaque burden, cell-cell communication, microglial morphology and neuroinflammation markers were assessed. Following rTMS, upregulation of Cx3cl1 in GABAergic neurons was observed, leading to enhanced microglial phagocytosis, reduced amyloid plaque burden, improved cell-cell communication, altered microglial morphology and decreased neuroinflammation markers. This study demonstrates that rTMS promotes Aβ clearance and cognitive recovery in AD by activating GABAergic neurons and enhancing Cx3cl1-Cx3cr1 signalling, providing a novel molecular target for non-invasive AD therapy. These findings support the transition from invasive to non-invasive AD treatments, improving patient adherence and therapeutic outcomes. Furthermore, the elucidation of cellular and molecular mechanisms facilitates drug development targeting the Cx3cl1-Cx3cr1 axis, offering new opportunities for AD intervention.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70061"},"PeriodicalIF":5.9000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repetitive Transcranial Magnetic Stimulation Induces Cognitive Recovery in Alzheimer's Disease via GABAergic Neuron Activation of the Cx3cl1-Cx3cr1 Axis.\",\"authors\":\"Yunxiao Kang, Jilun Liu, Yu Wang, Jiaying Wang, Jinyang Wang, Chenming Zhou, Rui Cui, Tianyun Zhang\",\"doi\":\"10.1111/cpr.70061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the impact of repetitive transcranial magnetic stimulation (rTMS) on cognitive recovery in Alzheimer's disease (AD) by exploring the role of GABAergic neuron activation and modulation of the Cx3cl1-Cx3cr1 signalling axis. The 5xFAD mouse model was utilised for scRNA-seq analysis to examine changes in gene expression post-rTMS. Microglial phagocytic activity, amyloid plaque burden, cell-cell communication, microglial morphology and neuroinflammation markers were assessed. Following rTMS, upregulation of Cx3cl1 in GABAergic neurons was observed, leading to enhanced microglial phagocytosis, reduced amyloid plaque burden, improved cell-cell communication, altered microglial morphology and decreased neuroinflammation markers. This study demonstrates that rTMS promotes Aβ clearance and cognitive recovery in AD by activating GABAergic neurons and enhancing Cx3cl1-Cx3cr1 signalling, providing a novel molecular target for non-invasive AD therapy. These findings support the transition from invasive to non-invasive AD treatments, improving patient adherence and therapeutic outcomes. Furthermore, the elucidation of cellular and molecular mechanisms facilitates drug development targeting the Cx3cl1-Cx3cr1 axis, offering new opportunities for AD intervention.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\" \",\"pages\":\"e70061\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/cpr.70061\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70061","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Repetitive Transcranial Magnetic Stimulation Induces Cognitive Recovery in Alzheimer's Disease via GABAergic Neuron Activation of the Cx3cl1-Cx3cr1 Axis.
This study aimed to investigate the impact of repetitive transcranial magnetic stimulation (rTMS) on cognitive recovery in Alzheimer's disease (AD) by exploring the role of GABAergic neuron activation and modulation of the Cx3cl1-Cx3cr1 signalling axis. The 5xFAD mouse model was utilised for scRNA-seq analysis to examine changes in gene expression post-rTMS. Microglial phagocytic activity, amyloid plaque burden, cell-cell communication, microglial morphology and neuroinflammation markers were assessed. Following rTMS, upregulation of Cx3cl1 in GABAergic neurons was observed, leading to enhanced microglial phagocytosis, reduced amyloid plaque burden, improved cell-cell communication, altered microglial morphology and decreased neuroinflammation markers. This study demonstrates that rTMS promotes Aβ clearance and cognitive recovery in AD by activating GABAergic neurons and enhancing Cx3cl1-Cx3cr1 signalling, providing a novel molecular target for non-invasive AD therapy. These findings support the transition from invasive to non-invasive AD treatments, improving patient adherence and therapeutic outcomes. Furthermore, the elucidation of cellular and molecular mechanisms facilitates drug development targeting the Cx3cl1-Cx3cr1 axis, offering new opportunities for AD intervention.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.