藏羊瘤胃微生物群与神经递质之间的相互作用在适应物候变化中起着重要作用。

IF 2.6 2区 农林科学 Q1 VETERINARY SCIENCES
Wei Huang, Yuzhu Sha, Qianling Chen, Xiaowei Chen, Min Gao, Xiu Liu, Yapeng He, Xu Gao, Jiang Hu, Jiqing Wang, Shaobin Li, Zhiyun Hao, Yanyu He
{"title":"藏羊瘤胃微生物群与神经递质之间的相互作用在适应物候变化中起着重要作用。","authors":"Wei Huang, Yuzhu Sha, Qianling Chen, Xiaowei Chen, Min Gao, Xiu Liu, Yapeng He, Xu Gao, Jiang Hu, Jiqing Wang, Shaobin Li, Zhiyun Hao, Yanyu He","doi":"10.1186/s12917-025-04823-8","DOIUrl":null,"url":null,"abstract":"<p><p>The gut-brain axis is regarded as the \"second brain\" of the host. Gut microbiota and their metabolites affect intestinal homeostasis, function, and phenotype by regulating bidirectional communication between the gut and brain. This serves as a vital strategy for understanding how gut microbiota regulate nutrient metabolism and adaptability in animals. This study explored the metabolic mechanisms through which Tibetan sheep adapt to high-altitude environments via the rumen microbiota-gut-brain axis across different phenological periods (returning-green period, fresh grass period and withered grass period). By analyzing metabolic indicators, neurotransmitters, and gene and protein expression in serum, rumen, adipose, and hypothalamic tissues, we discovered that energy metabolism markers (creatine kinase, lactate dehydrogenase, glucose) and immunoglobulins (IgG, IgM) in the serum were significantly elevated during the fresh grass period (P < 0.05). In contrast, thyroid hormones T3 and T4 were at higher levels during the returning-green period (P < 0.05). The density of rumen fiber-degrading bacteria was higher during the returning-green period (P < 0.05). Meanwhile, the densities of Butyrivibrio fibrisolvens, Selenomonas ruminantium, and Treponema bryantii microbiota significantly during the fresh grass period and were positively correlated with isovaleric acid concentration (P < 0.05). Neurotransmitters (5-HT, DOPAC, 5-HIAA, and NE) were significantly elevated in both the rumen epithelium and hypothalamus during the fresh grass period (P < 0.05). The analysis of the cAMP-PKA-pCREB pathway showed that the genes and proteins of UCP1, PKA, and CREB1 were highly expressed in adipose tissue during the fresh grass and withered grass periods, and there significant negative correlations to specific microbiota (P < 0.05). In summary, Tibetan sheep adapt to high-altitude environments through the rumen microbiota-gut-brain axis, regulating metabolic and neurotransmitter changes to establish a unique metabolic adaptation mechanism.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":"21 1","pages":"373"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105162/pdf/","citationCount":"0","resultStr":"{\"title\":\"The interaction between rumen microbiota and neurotransmitters plays an important role in the adaptation of phenological changes in Tibetan sheep.\",\"authors\":\"Wei Huang, Yuzhu Sha, Qianling Chen, Xiaowei Chen, Min Gao, Xiu Liu, Yapeng He, Xu Gao, Jiang Hu, Jiqing Wang, Shaobin Li, Zhiyun Hao, Yanyu He\",\"doi\":\"10.1186/s12917-025-04823-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gut-brain axis is regarded as the \\\"second brain\\\" of the host. Gut microbiota and their metabolites affect intestinal homeostasis, function, and phenotype by regulating bidirectional communication between the gut and brain. This serves as a vital strategy for understanding how gut microbiota regulate nutrient metabolism and adaptability in animals. This study explored the metabolic mechanisms through which Tibetan sheep adapt to high-altitude environments via the rumen microbiota-gut-brain axis across different phenological periods (returning-green period, fresh grass period and withered grass period). By analyzing metabolic indicators, neurotransmitters, and gene and protein expression in serum, rumen, adipose, and hypothalamic tissues, we discovered that energy metabolism markers (creatine kinase, lactate dehydrogenase, glucose) and immunoglobulins (IgG, IgM) in the serum were significantly elevated during the fresh grass period (P < 0.05). In contrast, thyroid hormones T3 and T4 were at higher levels during the returning-green period (P < 0.05). The density of rumen fiber-degrading bacteria was higher during the returning-green period (P < 0.05). Meanwhile, the densities of Butyrivibrio fibrisolvens, Selenomonas ruminantium, and Treponema bryantii microbiota significantly during the fresh grass period and were positively correlated with isovaleric acid concentration (P < 0.05). Neurotransmitters (5-HT, DOPAC, 5-HIAA, and NE) were significantly elevated in both the rumen epithelium and hypothalamus during the fresh grass period (P < 0.05). The analysis of the cAMP-PKA-pCREB pathway showed that the genes and proteins of UCP1, PKA, and CREB1 were highly expressed in adipose tissue during the fresh grass and withered grass periods, and there significant negative correlations to specific microbiota (P < 0.05). In summary, Tibetan sheep adapt to high-altitude environments through the rumen microbiota-gut-brain axis, regulating metabolic and neurotransmitter changes to establish a unique metabolic adaptation mechanism.</p>\",\"PeriodicalId\":9041,\"journal\":{\"name\":\"BMC Veterinary Research\",\"volume\":\"21 1\",\"pages\":\"373\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105162/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Veterinary Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12917-025-04823-8\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12917-025-04823-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

肠脑轴被认为是宿主的“第二大脑”。肠道微生物群及其代谢物通过调节肠道和大脑之间的双向通讯来影响肠道内稳态、功能和表型。这是了解肠道微生物群如何调节动物营养代谢和适应性的重要策略。本研究通过不同物候期(返青期、鲜草期和枯草期)的瘤胃微生物-肠-脑轴,探索藏羊适应高海拔环境的代谢机制。通过分析血清、瘤胃、脂肪和下丘脑组织的代谢指标、神经递质以及基因和蛋白的表达,我们发现在鲜草期,血清中的能量代谢标志物(肌酸激酶、乳酸脱氢酶、葡萄糖)和免疫球蛋白(IgG、IgM)显著升高(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The interaction between rumen microbiota and neurotransmitters plays an important role in the adaptation of phenological changes in Tibetan sheep.

The gut-brain axis is regarded as the "second brain" of the host. Gut microbiota and their metabolites affect intestinal homeostasis, function, and phenotype by regulating bidirectional communication between the gut and brain. This serves as a vital strategy for understanding how gut microbiota regulate nutrient metabolism and adaptability in animals. This study explored the metabolic mechanisms through which Tibetan sheep adapt to high-altitude environments via the rumen microbiota-gut-brain axis across different phenological periods (returning-green period, fresh grass period and withered grass period). By analyzing metabolic indicators, neurotransmitters, and gene and protein expression in serum, rumen, adipose, and hypothalamic tissues, we discovered that energy metabolism markers (creatine kinase, lactate dehydrogenase, glucose) and immunoglobulins (IgG, IgM) in the serum were significantly elevated during the fresh grass period (P < 0.05). In contrast, thyroid hormones T3 and T4 were at higher levels during the returning-green period (P < 0.05). The density of rumen fiber-degrading bacteria was higher during the returning-green period (P < 0.05). Meanwhile, the densities of Butyrivibrio fibrisolvens, Selenomonas ruminantium, and Treponema bryantii microbiota significantly during the fresh grass period and were positively correlated with isovaleric acid concentration (P < 0.05). Neurotransmitters (5-HT, DOPAC, 5-HIAA, and NE) were significantly elevated in both the rumen epithelium and hypothalamus during the fresh grass period (P < 0.05). The analysis of the cAMP-PKA-pCREB pathway showed that the genes and proteins of UCP1, PKA, and CREB1 were highly expressed in adipose tissue during the fresh grass and withered grass periods, and there significant negative correlations to specific microbiota (P < 0.05). In summary, Tibetan sheep adapt to high-altitude environments through the rumen microbiota-gut-brain axis, regulating metabolic and neurotransmitter changes to establish a unique metabolic adaptation mechanism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Veterinary Research
BMC Veterinary Research VETERINARY SCIENCES-
CiteScore
4.80
自引率
3.80%
发文量
420
审稿时长
3-6 weeks
期刊介绍: BMC Veterinary Research is an open access, peer-reviewed journal that considers articles on all aspects of veterinary science and medicine, including the epidemiology, diagnosis, prevention and treatment of medical conditions of domestic, companion, farm and wild animals, as well as the biomedical processes that underlie their health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信