{"title":"用于可控二维分子结晶的双溶剂诱导持久纳米级湿膜。","authors":"Yumeng Wang, Lujing Shao, Yu Chen, Shengnan Chen, Yongrui Yang, Fanyi Min, Mengmeng Guo, Wenkun Lv, Zheng Li, Zhiyuan Qu, Lutong Guo, Jie Gao, Xiaodong Yin, Yali Yu, Zhongming Wei, Yanlin Song, Yali Qiao","doi":"10.1016/j.scib.2025.05.007","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional organic semiconductor single crystals (2D OSSCs) have great potential for use in high-performance optoelectronic devices. However, challenges associated with controlling complex fluid dynamics and molecular mass transfer during solution-based processes hinder large-scale high-quality production. To address this issue, we developed a nanoconfinement-driven approach for controlling molecular crystallization, improving isotropic molecular mass transfer in fluids, and regulating the morphology of the 2D molecular film. Using a dual-solvent strategy, we created a stable nanoscale extended evaporation meniscus that modulates molecular nucleation and growth dynamics, thereby facilitating the direct shift from one-dimensional to two-dimensional crystals. Dual solvents are essential for generating and maintaining nanoscale wet films during meniscal recession, which is crucial for 2D crystal engineering. Mechanistic studies revealed that adhesion in a dual-solvent system is vital for meniscus formation while disjoining pressure maintains its stability. We also systematically evaluated several [1]benzothieno[3,2-b][1]benzothiophenes (BTBTs) bearing various alkyl chains, which revealed how molecular interactions affect morphology during printing. Organic-field-effect transistors fabricated using 2D OSSCs have significantly higher carrier mobilities than those with striped structures. Moreover, the highly ordered 2D C8-BTBT single-crystal thin film exhibited high sensitivity to polarized ultraviolet light, boasting a dichroic ratio of 2.80 and demonstrating exceptional imaging capabilities for polarized ultraviolet light.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":""},"PeriodicalIF":21.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-solvent-induced persistent nanoscale wet film for controllable two-dimensional molecular crystallization toward polarization-sensitive photodetectors.\",\"authors\":\"Yumeng Wang, Lujing Shao, Yu Chen, Shengnan Chen, Yongrui Yang, Fanyi Min, Mengmeng Guo, Wenkun Lv, Zheng Li, Zhiyuan Qu, Lutong Guo, Jie Gao, Xiaodong Yin, Yali Yu, Zhongming Wei, Yanlin Song, Yali Qiao\",\"doi\":\"10.1016/j.scib.2025.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-dimensional organic semiconductor single crystals (2D OSSCs) have great potential for use in high-performance optoelectronic devices. However, challenges associated with controlling complex fluid dynamics and molecular mass transfer during solution-based processes hinder large-scale high-quality production. To address this issue, we developed a nanoconfinement-driven approach for controlling molecular crystallization, improving isotropic molecular mass transfer in fluids, and regulating the morphology of the 2D molecular film. Using a dual-solvent strategy, we created a stable nanoscale extended evaporation meniscus that modulates molecular nucleation and growth dynamics, thereby facilitating the direct shift from one-dimensional to two-dimensional crystals. Dual solvents are essential for generating and maintaining nanoscale wet films during meniscal recession, which is crucial for 2D crystal engineering. Mechanistic studies revealed that adhesion in a dual-solvent system is vital for meniscus formation while disjoining pressure maintains its stability. We also systematically evaluated several [1]benzothieno[3,2-b][1]benzothiophenes (BTBTs) bearing various alkyl chains, which revealed how molecular interactions affect morphology during printing. Organic-field-effect transistors fabricated using 2D OSSCs have significantly higher carrier mobilities than those with striped structures. Moreover, the highly ordered 2D C8-BTBT single-crystal thin film exhibited high sensitivity to polarized ultraviolet light, boasting a dichroic ratio of 2.80 and demonstrating exceptional imaging capabilities for polarized ultraviolet light.</p>\",\"PeriodicalId\":421,\"journal\":{\"name\":\"Science Bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Bulletin\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scib.2025.05.007\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.scib.2025.05.007","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Dual-solvent-induced persistent nanoscale wet film for controllable two-dimensional molecular crystallization toward polarization-sensitive photodetectors.
Two-dimensional organic semiconductor single crystals (2D OSSCs) have great potential for use in high-performance optoelectronic devices. However, challenges associated with controlling complex fluid dynamics and molecular mass transfer during solution-based processes hinder large-scale high-quality production. To address this issue, we developed a nanoconfinement-driven approach for controlling molecular crystallization, improving isotropic molecular mass transfer in fluids, and regulating the morphology of the 2D molecular film. Using a dual-solvent strategy, we created a stable nanoscale extended evaporation meniscus that modulates molecular nucleation and growth dynamics, thereby facilitating the direct shift from one-dimensional to two-dimensional crystals. Dual solvents are essential for generating and maintaining nanoscale wet films during meniscal recession, which is crucial for 2D crystal engineering. Mechanistic studies revealed that adhesion in a dual-solvent system is vital for meniscus formation while disjoining pressure maintains its stability. We also systematically evaluated several [1]benzothieno[3,2-b][1]benzothiophenes (BTBTs) bearing various alkyl chains, which revealed how molecular interactions affect morphology during printing. Organic-field-effect transistors fabricated using 2D OSSCs have significantly higher carrier mobilities than those with striped structures. Moreover, the highly ordered 2D C8-BTBT single-crystal thin film exhibited high sensitivity to polarized ultraviolet light, boasting a dichroic ratio of 2.80 and demonstrating exceptional imaging capabilities for polarized ultraviolet light.
期刊介绍:
Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.