基因组分析表明,在亚马逊Pipra Manakin复合体中,有丝核共同进化在快速的时间尺度上进行。

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ellen Nikelski, Jason T Weir
{"title":"基因组分析表明,在亚马逊Pipra Manakin复合体中,有丝核共同进化在快速的时间尺度上进行。","authors":"Ellen Nikelski, Jason T Weir","doi":"10.1111/mec.17802","DOIUrl":null,"url":null,"abstract":"<p><p>Mitonuclear coevolution is defined as reciprocal selection between the nuclear and mitochondrial genomes and is necessary to maintain compatibility between nuclear- and mitochondrially-encoded products that interact during mitochondrial processes including mitochondrial genome replication, transcription and translation and oxidative phosphorylation. Theory predicts that mitonuclear coevolution may play a crucial role in the early phases of speciation by generating strong genetic incompatibilities between recently diverged taxa that have evolved unique mitochondrial-mitonuclear haplotypes. However, the timescale over which mitonuclear coevolution proceeds remains unclear, making it difficult to definitively link this process with early speciation. Here, we test for expected genomic signals of mitonuclear coevolution across the Amazonian Pipra manakin complex, which includes recently and more deeply diverged avian lineages. Using dN/dS ratio analyses, we compared signals of positive selection in mitonuclear gene categories and functionally equivalent nuclear gene categories that do not participate in mitonuclear coevolution for each pair of Pipra lineages separately and for all the lineages simultaneously. For the ribosomal protein and aminoacyl tRNA synthetase (AARS) gene categories, we identified genomic patterns consistent with stronger positive selection in mitonuclear versus nuclear genes, which is suggestive of mitonuclear coevolution having occurred across the Pipra complex. Significantly, we determined that expected genomic signals of mitonuclear coevolution could be identified between lineages that diverged as recently as 0.35-0.4 MYA. This time span is in keeping with the initial stages of avian speciation and suggests that mitonuclear coevolution may operate on a timescale that would allow it to play an important role during early speciation.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17802"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic Analysis Suggests That Mitonuclear Coevolution Proceeds Over Rapid Timescales in the Amazonian Pipra Manakin Complex.\",\"authors\":\"Ellen Nikelski, Jason T Weir\",\"doi\":\"10.1111/mec.17802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitonuclear coevolution is defined as reciprocal selection between the nuclear and mitochondrial genomes and is necessary to maintain compatibility between nuclear- and mitochondrially-encoded products that interact during mitochondrial processes including mitochondrial genome replication, transcription and translation and oxidative phosphorylation. Theory predicts that mitonuclear coevolution may play a crucial role in the early phases of speciation by generating strong genetic incompatibilities between recently diverged taxa that have evolved unique mitochondrial-mitonuclear haplotypes. However, the timescale over which mitonuclear coevolution proceeds remains unclear, making it difficult to definitively link this process with early speciation. Here, we test for expected genomic signals of mitonuclear coevolution across the Amazonian Pipra manakin complex, which includes recently and more deeply diverged avian lineages. Using dN/dS ratio analyses, we compared signals of positive selection in mitonuclear gene categories and functionally equivalent nuclear gene categories that do not participate in mitonuclear coevolution for each pair of Pipra lineages separately and for all the lineages simultaneously. For the ribosomal protein and aminoacyl tRNA synthetase (AARS) gene categories, we identified genomic patterns consistent with stronger positive selection in mitonuclear versus nuclear genes, which is suggestive of mitonuclear coevolution having occurred across the Pipra complex. Significantly, we determined that expected genomic signals of mitonuclear coevolution could be identified between lineages that diverged as recently as 0.35-0.4 MYA. This time span is in keeping with the initial stages of avian speciation and suggests that mitonuclear coevolution may operate on a timescale that would allow it to play an important role during early speciation.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17802\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17802\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17802","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

有丝核共同进化被定义为核和线粒体基因组之间的相互选择,是维持核和线粒体编码产物之间兼容性所必需的,这些产物在线粒体过程中相互作用,包括线粒体基因组复制、转录和翻译以及氧化磷酸化。理论预测,有丝核共同进化可能在物种形成的早期阶段发挥关键作用,通过在最近分化的分类群之间产生强烈的遗传不相容,这些分类群进化出独特的线粒体-有丝核单倍型。然而,有丝核共同进化进行的时间尺度仍然不清楚,这使得很难将这一过程与早期物种形成明确地联系起来。在这里,我们测试了亚马孙Pipra manakin复合体中预期的有丝核共同进化的基因组信号,其中包括最近和更深入分化的鸟类谱系。利用dN/dS比值分析,我们分别比较了每对Pipra谱系中有丝核基因类别和不参与有丝核共同进化的功能等效核基因类别的正选择信号,并同时比较了所有谱系中有丝核基因类别的正选择信号。对于核糖体蛋白和氨基酰基tRNA合成酶(AARS)基因类别,我们确定了与有丝核基因与核基因更强的正选择相一致的基因组模式,这表明有丝核共同进化发生在Pipra复合体中。值得注意的是,我们确定有丝核共同进化的预期基因组信号可以在最近0.35-0.4 MYA分化的谱系之间识别出来。这个时间跨度与鸟类物种形成的初始阶段保持一致,并表明有丝核共同进化可能在一个允许它在早期物种形成中发挥重要作用的时间尺度上运作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genomic Analysis Suggests That Mitonuclear Coevolution Proceeds Over Rapid Timescales in the Amazonian Pipra Manakin Complex.

Mitonuclear coevolution is defined as reciprocal selection between the nuclear and mitochondrial genomes and is necessary to maintain compatibility between nuclear- and mitochondrially-encoded products that interact during mitochondrial processes including mitochondrial genome replication, transcription and translation and oxidative phosphorylation. Theory predicts that mitonuclear coevolution may play a crucial role in the early phases of speciation by generating strong genetic incompatibilities between recently diverged taxa that have evolved unique mitochondrial-mitonuclear haplotypes. However, the timescale over which mitonuclear coevolution proceeds remains unclear, making it difficult to definitively link this process with early speciation. Here, we test for expected genomic signals of mitonuclear coevolution across the Amazonian Pipra manakin complex, which includes recently and more deeply diverged avian lineages. Using dN/dS ratio analyses, we compared signals of positive selection in mitonuclear gene categories and functionally equivalent nuclear gene categories that do not participate in mitonuclear coevolution for each pair of Pipra lineages separately and for all the lineages simultaneously. For the ribosomal protein and aminoacyl tRNA synthetase (AARS) gene categories, we identified genomic patterns consistent with stronger positive selection in mitonuclear versus nuclear genes, which is suggestive of mitonuclear coevolution having occurred across the Pipra complex. Significantly, we determined that expected genomic signals of mitonuclear coevolution could be identified between lineages that diverged as recently as 0.35-0.4 MYA. This time span is in keeping with the initial stages of avian speciation and suggests that mitonuclear coevolution may operate on a timescale that would allow it to play an important role during early speciation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信