Ruth Benavides-Piccione, Isabel Fernaud-Espinosa, Asta Kastanauskaite, Javier DeFelipe
{"title":"人和小鼠皮质锥体神经元树突棘大小和密度的原理","authors":"Ruth Benavides-Piccione, Isabel Fernaud-Espinosa, Asta Kastanauskaite, Javier DeFelipe","doi":"10.1002/cne.70060","DOIUrl":null,"url":null,"abstract":"<p>Dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the cerebral cortex, and dendritic spine morphology directly reflects their function. However, there are scarce data available regarding both the detailed morphology of these structures for the human cerebral cortex and the extent to which they differ in comparison with other species. Thus, in the present study, we used intracellular injections of Lucifer yellow to reconstruct—in three dimensions—the morphology of basal dendritic spines from pyramidal cells in the human and mouse CA1 hippocampal region and compared these spines with those of the human temporal and cingular cortex. We found that human hippocampal dendrites show lower spine density, larger volume, and longer length of dendritic spines than mouse CA1 spines. Furthermore, human hippocampal dendrites show higher spine density, smaller spine volume, and shorter length compared to dendritic spines from the human temporal and cingular cortex. This morphological diversity suggests an equally large variability of synaptic strength and learning rules across these brain regions in humans and between humans and mice. Nevertheless, a balance between size and density was found in all cases, which may be a cortical rule maintained across cortical areas and species.</p>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"533 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cne.70060","citationCount":"0","resultStr":"{\"title\":\"Principles for Dendritic Spine Size and Density in Human and Mouse Cortical Pyramidal Neurons\",\"authors\":\"Ruth Benavides-Piccione, Isabel Fernaud-Espinosa, Asta Kastanauskaite, Javier DeFelipe\",\"doi\":\"10.1002/cne.70060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the cerebral cortex, and dendritic spine morphology directly reflects their function. However, there are scarce data available regarding both the detailed morphology of these structures for the human cerebral cortex and the extent to which they differ in comparison with other species. Thus, in the present study, we used intracellular injections of Lucifer yellow to reconstruct—in three dimensions—the morphology of basal dendritic spines from pyramidal cells in the human and mouse CA1 hippocampal region and compared these spines with those of the human temporal and cingular cortex. We found that human hippocampal dendrites show lower spine density, larger volume, and longer length of dendritic spines than mouse CA1 spines. Furthermore, human hippocampal dendrites show higher spine density, smaller spine volume, and shorter length compared to dendritic spines from the human temporal and cingular cortex. This morphological diversity suggests an equally large variability of synaptic strength and learning rules across these brain regions in humans and between humans and mice. Nevertheless, a balance between size and density was found in all cases, which may be a cortical rule maintained across cortical areas and species.</p>\",\"PeriodicalId\":15552,\"journal\":{\"name\":\"Journal of Comparative Neurology\",\"volume\":\"533 6\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cne.70060\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cne.70060\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Neurology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cne.70060","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Principles for Dendritic Spine Size and Density in Human and Mouse Cortical Pyramidal Neurons
Dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the cerebral cortex, and dendritic spine morphology directly reflects their function. However, there are scarce data available regarding both the detailed morphology of these structures for the human cerebral cortex and the extent to which they differ in comparison with other species. Thus, in the present study, we used intracellular injections of Lucifer yellow to reconstruct—in three dimensions—the morphology of basal dendritic spines from pyramidal cells in the human and mouse CA1 hippocampal region and compared these spines with those of the human temporal and cingular cortex. We found that human hippocampal dendrites show lower spine density, larger volume, and longer length of dendritic spines than mouse CA1 spines. Furthermore, human hippocampal dendrites show higher spine density, smaller spine volume, and shorter length compared to dendritic spines from the human temporal and cingular cortex. This morphological diversity suggests an equally large variability of synaptic strength and learning rules across these brain regions in humans and between humans and mice. Nevertheless, a balance between size and density was found in all cases, which may be a cortical rule maintained across cortical areas and species.
期刊介绍:
Established in 1891, JCN is the oldest continually published basic neuroscience journal. Historically, as the name suggests, the journal focused on a comparison among species to uncover the intricacies of how the brain functions. In modern times, this research is called systems neuroscience where animal models are used to mimic core cognitive processes with the ultimate goal of understanding neural circuits and connections that give rise to behavioral patterns and different neural states.
Research published in JCN covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of nervous systems in species with an emphasis on the way that species adaptations inform about the function or organization of the nervous systems, rather than on their evolution per se.
JCN publishes primary research articles and critical commentaries and review-type articles offering expert insight in to cutting edge research in the field of systems neuroscience; a complete list of contribution types is given in the Author Guidelines. For primary research contributions, only full-length investigative reports are desired; the journal does not accept short communications.