Kavitha Karunakaran, Abdul Ajees Abdul Salam, Piya Paul Mudgal
{"title":"基孔肯雅病毒衣壳蛋白的开发:抗病毒治疗开发的重点靶点","authors":"Kavitha Karunakaran, Abdul Ajees Abdul Salam, Piya Paul Mudgal","doi":"10.1007/s00705-025-06325-2","DOIUrl":null,"url":null,"abstract":"<div><p>Chikungunya disease is spread by the bite of infected <i>Aedes</i> mosquitoes. It is considered a neglected tropical disease that has the potential to cause sporadic epidemics in naive populations. Despite the substantial investment in research, there are no approved antiviral treatments for chikungunya. Several screening approaches have been used to identify potential antiviral molecules that target the whole virus, viral proteins, and viral-host interactions, often in conjunction with computational studies. The genome of chikungunya virus (CHIKV) encodes four nonstructural and five structural proteins. The capsid protein (CP) is a small structural protein with enzymatic activity. Owing to its critical role in different stages of the viral life cycle, the CP can be targeted at multiple stages, thereby impeding viral multiplication. There is evidence suggesting that the CP may be a promising target for drug development, and this has led to the discovery of various inhibitors through diverse in vitro and in silico analyses. Both cell-based and cell-free assays have been widely used to identify and evaluate CHIKV CP inhibitors. Computer-based studies targeting CHIKV proteins, including CP, have identified several lead compounds, which are being further evaluated in various in vitro systems. No review has been published on the CHIKV CP, and papers have focused on drug development and the targeting of viral proteins and associated factors. In this review, we summarize the research that has been conducted on the CHIKV CP, including structural studies, antiviral research, and prospects for the use of the CP as an antiviral target.</p></div>","PeriodicalId":8359,"journal":{"name":"Archives of Virology","volume":"170 7","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting the chikungunya virus capsid protein: a focused target for antiviral therapeutic development\",\"authors\":\"Kavitha Karunakaran, Abdul Ajees Abdul Salam, Piya Paul Mudgal\",\"doi\":\"10.1007/s00705-025-06325-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chikungunya disease is spread by the bite of infected <i>Aedes</i> mosquitoes. It is considered a neglected tropical disease that has the potential to cause sporadic epidemics in naive populations. Despite the substantial investment in research, there are no approved antiviral treatments for chikungunya. Several screening approaches have been used to identify potential antiviral molecules that target the whole virus, viral proteins, and viral-host interactions, often in conjunction with computational studies. The genome of chikungunya virus (CHIKV) encodes four nonstructural and five structural proteins. The capsid protein (CP) is a small structural protein with enzymatic activity. Owing to its critical role in different stages of the viral life cycle, the CP can be targeted at multiple stages, thereby impeding viral multiplication. There is evidence suggesting that the CP may be a promising target for drug development, and this has led to the discovery of various inhibitors through diverse in vitro and in silico analyses. Both cell-based and cell-free assays have been widely used to identify and evaluate CHIKV CP inhibitors. Computer-based studies targeting CHIKV proteins, including CP, have identified several lead compounds, which are being further evaluated in various in vitro systems. No review has been published on the CHIKV CP, and papers have focused on drug development and the targeting of viral proteins and associated factors. In this review, we summarize the research that has been conducted on the CHIKV CP, including structural studies, antiviral research, and prospects for the use of the CP as an antiviral target.</p></div>\",\"PeriodicalId\":8359,\"journal\":{\"name\":\"Archives of Virology\",\"volume\":\"170 7\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00705-025-06325-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Virology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00705-025-06325-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
Exploiting the chikungunya virus capsid protein: a focused target for antiviral therapeutic development
Chikungunya disease is spread by the bite of infected Aedes mosquitoes. It is considered a neglected tropical disease that has the potential to cause sporadic epidemics in naive populations. Despite the substantial investment in research, there are no approved antiviral treatments for chikungunya. Several screening approaches have been used to identify potential antiviral molecules that target the whole virus, viral proteins, and viral-host interactions, often in conjunction with computational studies. The genome of chikungunya virus (CHIKV) encodes four nonstructural and five structural proteins. The capsid protein (CP) is a small structural protein with enzymatic activity. Owing to its critical role in different stages of the viral life cycle, the CP can be targeted at multiple stages, thereby impeding viral multiplication. There is evidence suggesting that the CP may be a promising target for drug development, and this has led to the discovery of various inhibitors through diverse in vitro and in silico analyses. Both cell-based and cell-free assays have been widely used to identify and evaluate CHIKV CP inhibitors. Computer-based studies targeting CHIKV proteins, including CP, have identified several lead compounds, which are being further evaluated in various in vitro systems. No review has been published on the CHIKV CP, and papers have focused on drug development and the targeting of viral proteins and associated factors. In this review, we summarize the research that has been conducted on the CHIKV CP, including structural studies, antiviral research, and prospects for the use of the CP as an antiviral target.
期刊介绍:
Archives of Virology publishes original contributions from all branches of research on viruses, virus-like agents, and virus infections of humans, animals, plants, insects, and bacteria. Coverage spans a broad spectrum of topics, from descriptions of newly discovered viruses, to studies of virus structure, composition, and genetics, to studies of virus interactions with host cells, organisms and populations. Studies employ molecular biologic, molecular genetics, and current immunologic and epidemiologic approaches. Contents include studies on the molecular pathogenesis, pathophysiology, and genetics of virus infections in individual hosts, and studies on the molecular epidemiology of virus infections in populations. Also included are studies involving applied research such as diagnostic technology development, monoclonal antibody panel development, vaccine development, and antiviral drug development.Archives of Virology wishes to publish obituaries of recently deceased well-known virologists and leading figures in virology.