退火和辐射对Al2O3 MOSCAPs电性能的影响:来自C-V和G-V测量的启示

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ramazan Lok
{"title":"退火和辐射对Al2O3 MOSCAPs电性能的影响:来自C-V和G-V测量的启示","authors":"Ramazan Lok","doi":"10.1007/s10854-025-14961-2","DOIUrl":null,"url":null,"abstract":"<div><p>The annealing process impacts the electrical properties of Al<sub>2</sub>O<sub>3</sub> MOSCAPs by altering defect densities and interface trap states. Annealing at 500 °C enhances structural integrity and optimizes capacitance, while higher temperatures lead to crystallization, increased interface defects, and SiO<sub>2</sub> interlayer formation, reducing capacitance. <i>C</i>–<i>V</i> and <i>G</i>–<i>V</i> measurements analyze interface states, series resistance, and oxide quality. To eliminate series resistance effects and determine electrical properties accurately, the Nicollian and Goetzberger method should be used. As frequency increases, the rearrangement time of trapped charges decreases, shifting the diffusion potential to more negative values. At high frequencies, interface state influence weakens, enabling more accurate doping concentration (Nd) determination, while barrier potential (<i>Φ</i><sub>B</sub>) decreases and carrier mobility increases. Radiation exposure reduces capacitance due to defect formation, altered charge carrier dynamics, and dielectric degradation. Radiation-induced positive charge accumulation and increased interface state density (<i>N</i><sub>it</sub>) cause a negative <i>C</i>–<i>V</i> curve shift and lower threshold voltage (Vth). Al<sub>2</sub>O<sub>3</sub>’s radiation sensitivity varies, with reported values from 0.0020 mV/Gy to 1.0 mV/Gy. This study measured 0.0035 mV/Gy. Comparatively, SiO<sub>2</sub> and non-ALD SiO<sub>2</sub> showed higher sensitivity, while HfO<sub>2</sub> demonstrated lower sensitivity.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 15","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10854-025-14961-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Annealing and radiation effects on electrical properties of ALD-grown Al2O3 MOSCAPs: insights from C–V and G–V measurements\",\"authors\":\"Ramazan Lok\",\"doi\":\"10.1007/s10854-025-14961-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The annealing process impacts the electrical properties of Al<sub>2</sub>O<sub>3</sub> MOSCAPs by altering defect densities and interface trap states. Annealing at 500 °C enhances structural integrity and optimizes capacitance, while higher temperatures lead to crystallization, increased interface defects, and SiO<sub>2</sub> interlayer formation, reducing capacitance. <i>C</i>–<i>V</i> and <i>G</i>–<i>V</i> measurements analyze interface states, series resistance, and oxide quality. To eliminate series resistance effects and determine electrical properties accurately, the Nicollian and Goetzberger method should be used. As frequency increases, the rearrangement time of trapped charges decreases, shifting the diffusion potential to more negative values. At high frequencies, interface state influence weakens, enabling more accurate doping concentration (Nd) determination, while barrier potential (<i>Φ</i><sub>B</sub>) decreases and carrier mobility increases. Radiation exposure reduces capacitance due to defect formation, altered charge carrier dynamics, and dielectric degradation. Radiation-induced positive charge accumulation and increased interface state density (<i>N</i><sub>it</sub>) cause a negative <i>C</i>–<i>V</i> curve shift and lower threshold voltage (Vth). Al<sub>2</sub>O<sub>3</sub>’s radiation sensitivity varies, with reported values from 0.0020 mV/Gy to 1.0 mV/Gy. This study measured 0.0035 mV/Gy. Comparatively, SiO<sub>2</sub> and non-ALD SiO<sub>2</sub> showed higher sensitivity, while HfO<sub>2</sub> demonstrated lower sensitivity.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"36 15\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10854-025-14961-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-025-14961-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14961-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

退火过程通过改变缺陷密度和界面阱态来影响Al2O3 MOSCAPs的电学性能。500°C退火可以增强结构完整性并优化电容,而更高的温度会导致结晶,增加界面缺陷和SiO2层间形成,从而降低电容。C-V和G-V测量分析界面状态,串联电阻和氧化物质量。为了消除串联电阻效应并准确地确定电性能,应使用Nicollian和Goetzberger方法。随着频率的增加,被困电荷的重排时间减少,扩散势向负值移动。在高频下,界面态影响减弱,可以更准确地测定掺杂浓度(Nd),而势垒势(ΦB)降低,载流子迁移率增加。由于缺陷形成、电荷载流子动力学改变和电介质退化,辐射暴露降低了电容。辐射诱导的正电荷积累和界面态密度(Nit)的增加导致C-V曲线的负位移和较低的阈值电压(Vth)。Al2O3的辐射敏感性各不相同,报告值从0.0020 mV/Gy到1.0 mV/Gy不等。本研究测得0.0035 mV/Gy。相比之下,SiO2和非ald SiO2的灵敏度较高,而HfO2的灵敏度较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Annealing and radiation effects on electrical properties of ALD-grown Al2O3 MOSCAPs: insights from C–V and G–V measurements

The annealing process impacts the electrical properties of Al2O3 MOSCAPs by altering defect densities and interface trap states. Annealing at 500 °C enhances structural integrity and optimizes capacitance, while higher temperatures lead to crystallization, increased interface defects, and SiO2 interlayer formation, reducing capacitance. CV and GV measurements analyze interface states, series resistance, and oxide quality. To eliminate series resistance effects and determine electrical properties accurately, the Nicollian and Goetzberger method should be used. As frequency increases, the rearrangement time of trapped charges decreases, shifting the diffusion potential to more negative values. At high frequencies, interface state influence weakens, enabling more accurate doping concentration (Nd) determination, while barrier potential (ΦB) decreases and carrier mobility increases. Radiation exposure reduces capacitance due to defect formation, altered charge carrier dynamics, and dielectric degradation. Radiation-induced positive charge accumulation and increased interface state density (Nit) cause a negative CV curve shift and lower threshold voltage (Vth). Al2O3’s radiation sensitivity varies, with reported values from 0.0020 mV/Gy to 1.0 mV/Gy. This study measured 0.0035 mV/Gy. Comparatively, SiO2 and non-ALD SiO2 showed higher sensitivity, while HfO2 demonstrated lower sensitivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信