ZnO/冷喷涂Al体系的光学、介电和电学性能及其与光伏性能的相关性研究

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
S. Maadadi, M. E. A. Benamar, Y. Mebdoua, K. Derkaoui, F. Lekoui, J. M. Nunzi, H. Derbal Habak, M. El Ganaoui, N. Belkhalfa
{"title":"ZnO/冷喷涂Al体系的光学、介电和电学性能及其与光伏性能的相关性研究","authors":"S. Maadadi,&nbsp;M. E. A. Benamar,&nbsp;Y. Mebdoua,&nbsp;K. Derkaoui,&nbsp;F. Lekoui,&nbsp;J. M. Nunzi,&nbsp;H. Derbal Habak,&nbsp;M. El Ganaoui,&nbsp;N. Belkhalfa","doi":"10.1007/s11082-025-08266-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the optical, dielectric, and electrical properties of ZnO layers deposited on cold sprayed Al layer, emphasizing their potential for optoelectronic and photovoltaic applications. Optical measurements revealed a reduction in the ZnO bandgap to approximately 2.45 eV when interfaced with Al, broadening its absorption into the visible range and enhancing light-harvesting capabilities. Dielectric analysis showed a significant increase in the real part of the dielectric constant (ε<sub>r</sub>), reaching values up to 2.8 in the visible spectrum, indicative of polarization behavior. The imaginary part (ε<sub>i</sub>) demonstrated enhanced light absorption, further supported by increased optical conductivity (σ<sub>opt</sub>). Electrical conductivity analysis revealed improved charge transport properties, highlighting the ZnO/Al system’s efficiency in facilitating charge transfer. To evaluate its photovoltaic potential, the ZnO/Al system was integrated into a simulated perovskite solar cell as the electron transport layer (ETL). The simulated device achieved a power conversion efficiency (PCE) of 27.1%, with Jsc = 28.2 mA/cm<sup>2</sup>, Voc = 1.2 V, and FF = 82%. Optimization of the ZnO thickness revealed that a 100 nm layer would provide the best performance, balancing light absorption, charge transport, and minimal resistance. The external quantum efficiency (EQE) spectrum demonstrated a peak response (~ 90%) in the visible range (400–750 nm), confirming the efficiency of charge collection and transport. These findings highlight the superior optical, dielectric, and electrical properties of the ZnO/Al system, making it a promising candidate for high-efficiency optoelectronic and photovoltaic devices. The results provide a solid foundation for further development of ZnO-based materials in renewable energy applications.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 6","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of optical, dielectric, and electrical properties of ZnO/cold sprayed Al system and their correlation with photovoltaic performance\",\"authors\":\"S. Maadadi,&nbsp;M. E. A. Benamar,&nbsp;Y. Mebdoua,&nbsp;K. Derkaoui,&nbsp;F. Lekoui,&nbsp;J. M. Nunzi,&nbsp;H. Derbal Habak,&nbsp;M. El Ganaoui,&nbsp;N. Belkhalfa\",\"doi\":\"10.1007/s11082-025-08266-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the optical, dielectric, and electrical properties of ZnO layers deposited on cold sprayed Al layer, emphasizing their potential for optoelectronic and photovoltaic applications. Optical measurements revealed a reduction in the ZnO bandgap to approximately 2.45 eV when interfaced with Al, broadening its absorption into the visible range and enhancing light-harvesting capabilities. Dielectric analysis showed a significant increase in the real part of the dielectric constant (ε<sub>r</sub>), reaching values up to 2.8 in the visible spectrum, indicative of polarization behavior. The imaginary part (ε<sub>i</sub>) demonstrated enhanced light absorption, further supported by increased optical conductivity (σ<sub>opt</sub>). Electrical conductivity analysis revealed improved charge transport properties, highlighting the ZnO/Al system’s efficiency in facilitating charge transfer. To evaluate its photovoltaic potential, the ZnO/Al system was integrated into a simulated perovskite solar cell as the electron transport layer (ETL). The simulated device achieved a power conversion efficiency (PCE) of 27.1%, with Jsc = 28.2 mA/cm<sup>2</sup>, Voc = 1.2 V, and FF = 82%. Optimization of the ZnO thickness revealed that a 100 nm layer would provide the best performance, balancing light absorption, charge transport, and minimal resistance. The external quantum efficiency (EQE) spectrum demonstrated a peak response (~ 90%) in the visible range (400–750 nm), confirming the efficiency of charge collection and transport. These findings highlight the superior optical, dielectric, and electrical properties of the ZnO/Al system, making it a promising candidate for high-efficiency optoelectronic and photovoltaic devices. The results provide a solid foundation for further development of ZnO-based materials in renewable energy applications.</p></div>\",\"PeriodicalId\":720,\"journal\":{\"name\":\"Optical and Quantum Electronics\",\"volume\":\"57 6\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11082-025-08266-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-025-08266-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了冷喷涂铝层上ZnO层的光学、介电和电学性能,强调了其在光电和光伏应用方面的潜力。光学测量表明,当与Al界面时,ZnO的带隙减小到约2.45 eV,扩大了其在可见光范围内的吸收,增强了光收集能力。介电分析表明,介电常数的实部(εr)显著增加,在可见光谱中达到2.8,表明了极化行为。虚部(εi)表现出增强的光吸收,进一步得到了增加的光电导率(σopt)的支持。电导率分析表明,ZnO/Al体系在促进电荷转移方面的效率显著提高。为了评估其光伏潜力,将ZnO/Al系统集成到模拟钙钛矿太阳能电池中作为电子传输层(ETL)。仿真器件的功率转换效率(PCE)为27.1%,Jsc = 28.2 mA/cm2, Voc = 1.2 V, FF = 82%。对ZnO厚度的优化表明,100 nm的ZnO层具有最佳的性能,可以平衡光吸收、电荷输运和最小的电阻。外量子效率(EQE)光谱在400 ~ 750 nm可见范围内有峰值响应(~ 90%),证实了电荷收集和传输的效率。这些发现突出了ZnO/Al体系优越的光学、介电和电学性能,使其成为高效光电和光伏器件的有希望的候选者。研究结果为进一步开发zno基材料在可再生能源中的应用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of optical, dielectric, and electrical properties of ZnO/cold sprayed Al system and their correlation with photovoltaic performance

This study explores the optical, dielectric, and electrical properties of ZnO layers deposited on cold sprayed Al layer, emphasizing their potential for optoelectronic and photovoltaic applications. Optical measurements revealed a reduction in the ZnO bandgap to approximately 2.45 eV when interfaced with Al, broadening its absorption into the visible range and enhancing light-harvesting capabilities. Dielectric analysis showed a significant increase in the real part of the dielectric constant (εr), reaching values up to 2.8 in the visible spectrum, indicative of polarization behavior. The imaginary part (εi) demonstrated enhanced light absorption, further supported by increased optical conductivity (σopt). Electrical conductivity analysis revealed improved charge transport properties, highlighting the ZnO/Al system’s efficiency in facilitating charge transfer. To evaluate its photovoltaic potential, the ZnO/Al system was integrated into a simulated perovskite solar cell as the electron transport layer (ETL). The simulated device achieved a power conversion efficiency (PCE) of 27.1%, with Jsc = 28.2 mA/cm2, Voc = 1.2 V, and FF = 82%. Optimization of the ZnO thickness revealed that a 100 nm layer would provide the best performance, balancing light absorption, charge transport, and minimal resistance. The external quantum efficiency (EQE) spectrum demonstrated a peak response (~ 90%) in the visible range (400–750 nm), confirming the efficiency of charge collection and transport. These findings highlight the superior optical, dielectric, and electrical properties of the ZnO/Al system, making it a promising candidate for high-efficiency optoelectronic and photovoltaic devices. The results provide a solid foundation for further development of ZnO-based materials in renewable energy applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信