La, Y, Sc内嵌金属氮杂烯的稳定性和结构:笼型拓扑结构,n掺杂位点和金属†的作用

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jiaojiao Lin and Yang Wang
{"title":"La, Y, Sc内嵌金属氮杂烯的稳定性和结构:笼型拓扑结构,n掺杂位点和金属†的作用","authors":"Jiaojiao Lin and Yang Wang","doi":"10.1039/D5NJ01469G","DOIUrl":null,"url":null,"abstract":"<p >Endohedral metalloazafullerenes (EMAFs) are a distinctive class of fullerene derivatives characterized by the encapsulation of metal atoms or clusters within azafullerene cages. These intriguing nanomaterials exhibit unique properties with potential applications in quantum computing, molecular magnets, and optoelectronics. However, due to the experimental characterization limitations and the structural complexity that complicates computational studies, reliably identifying the molecular structures of EMAFs remains a challenging task. Moreover, the factors influencing their stability, such as cage topology, nitrogen doping sites, and encapsulated metal species, are not yet well understood. In this study, we employ density functional theory (as high as BP86/Def2-QZVP) to systematically investigate the stability and structures of monometallic EMAFs, M@C<small><sub>2<em>n</em>–1</sub></small>N (M = La, Y, Sc; 2<em>n</em> = 82, 84, 80, 72), focusing on the interplay between cage size and isomerism, nitrogen substitution, and metal encapsulation. We demonstrate that the experimentally observed La@C<small><sub>81</sub></small>N-<em>C</em><small><sub>3<em>v</em></sub></small>(8) structure corresponds to the most thermodynamically stable isomer. We further predict that all EMAFs studied exhibit significantly negative formation free energies, suggesting they are promising synthetic targets, particularly La@C<small><sub>83</sub></small>N-<em>D</em><small><sub>2<em>d</em></sub></small>(23) and La@C<small><sub>79</sub></small>N-<em>D</em><small><sub>5<em>h</em></sub></small>(6). Our results show that larger cage sizes, La encapsulation, and nitrogen substitution at pentagon-rich sites enhance the stability of monometallic EMAFs. These observations can be explained using simple electrostatic models and the topological charge stabilization rule. Our findings not only deepen the understanding of EMAF chemistry but also provide valuable insights for the design of EMAF-based functional materials with engineered electronic and magnetic properties.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 21","pages":" 8769-8781"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and structures of La, Y, and Sc endohedral metalloazafullerenes: the role of cage topology, N-doping site, and metal†\",\"authors\":\"Jiaojiao Lin and Yang Wang\",\"doi\":\"10.1039/D5NJ01469G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Endohedral metalloazafullerenes (EMAFs) are a distinctive class of fullerene derivatives characterized by the encapsulation of metal atoms or clusters within azafullerene cages. These intriguing nanomaterials exhibit unique properties with potential applications in quantum computing, molecular magnets, and optoelectronics. However, due to the experimental characterization limitations and the structural complexity that complicates computational studies, reliably identifying the molecular structures of EMAFs remains a challenging task. Moreover, the factors influencing their stability, such as cage topology, nitrogen doping sites, and encapsulated metal species, are not yet well understood. In this study, we employ density functional theory (as high as BP86/Def2-QZVP) to systematically investigate the stability and structures of monometallic EMAFs, M@C<small><sub>2<em>n</em>–1</sub></small>N (M = La, Y, Sc; 2<em>n</em> = 82, 84, 80, 72), focusing on the interplay between cage size and isomerism, nitrogen substitution, and metal encapsulation. We demonstrate that the experimentally observed La@C<small><sub>81</sub></small>N-<em>C</em><small><sub>3<em>v</em></sub></small>(8) structure corresponds to the most thermodynamically stable isomer. We further predict that all EMAFs studied exhibit significantly negative formation free energies, suggesting they are promising synthetic targets, particularly La@C<small><sub>83</sub></small>N-<em>D</em><small><sub>2<em>d</em></sub></small>(23) and La@C<small><sub>79</sub></small>N-<em>D</em><small><sub>5<em>h</em></sub></small>(6). Our results show that larger cage sizes, La encapsulation, and nitrogen substitution at pentagon-rich sites enhance the stability of monometallic EMAFs. These observations can be explained using simple electrostatic models and the topological charge stabilization rule. Our findings not only deepen the understanding of EMAF chemistry but also provide valuable insights for the design of EMAF-based functional materials with engineered electronic and magnetic properties.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 21\",\"pages\":\" 8769-8781\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj01469g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj01469g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

内嵌金属氮杂烯(EMAFs)是一类独特的富勒烯衍生物,其特征是金属原子或团簇被包裹在氮杂烯笼中。这些有趣的纳米材料在量子计算、分子磁体和光电子学方面具有潜在的应用前景。然而,由于实验表征的局限性和使计算研究复杂化的结构复杂性,可靠地识别EMAFs的分子结构仍然是一项具有挑战性的任务。此外,影响其稳定性的因素,如笼型拓扑结构、氮掺杂位置和被封装的金属种类,还没有很好地了解。在本研究中,我们采用密度泛函理论(高达BP86/Def2-QZVP)系统地研究了单金属EMAFs的稳定性和结构,M@C2n -1N (M = La, Y, Sc;2n = 82,84,80,72),重点研究笼型尺寸与异构、氮取代和金属包封之间的相互作用。我们证明了实验观察到的La@C81N-C3v(8)结构对应于最热力学稳定的异构体。我们进一步预测,所有研究的EMAFs都表现出明显的负形成自由能,这表明它们是有希望的合成靶标,特别是La@C83N-D2d(23)和La@C79N-D5h(6)。我们的研究结果表明,较大的笼形尺寸、La包封和富五边形位点的氮取代提高了单金属EMAFs的稳定性。这些观察结果可以用简单的静电模型和拓扑电荷稳定规则来解释。我们的发现不仅加深了对EMAF化学的理解,而且为设计具有工程电子和磁性能的EMAF功能材料提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and structures of La, Y, and Sc endohedral metalloazafullerenes: the role of cage topology, N-doping site, and metal†

Endohedral metalloazafullerenes (EMAFs) are a distinctive class of fullerene derivatives characterized by the encapsulation of metal atoms or clusters within azafullerene cages. These intriguing nanomaterials exhibit unique properties with potential applications in quantum computing, molecular magnets, and optoelectronics. However, due to the experimental characterization limitations and the structural complexity that complicates computational studies, reliably identifying the molecular structures of EMAFs remains a challenging task. Moreover, the factors influencing their stability, such as cage topology, nitrogen doping sites, and encapsulated metal species, are not yet well understood. In this study, we employ density functional theory (as high as BP86/Def2-QZVP) to systematically investigate the stability and structures of monometallic EMAFs, M@C2n–1N (M = La, Y, Sc; 2n = 82, 84, 80, 72), focusing on the interplay between cage size and isomerism, nitrogen substitution, and metal encapsulation. We demonstrate that the experimentally observed La@C81N-C3v(8) structure corresponds to the most thermodynamically stable isomer. We further predict that all EMAFs studied exhibit significantly negative formation free energies, suggesting they are promising synthetic targets, particularly La@C83N-D2d(23) and La@C79N-D5h(6). Our results show that larger cage sizes, La encapsulation, and nitrogen substitution at pentagon-rich sites enhance the stability of monometallic EMAFs. These observations can be explained using simple electrostatic models and the topological charge stabilization rule. Our findings not only deepen the understanding of EMAF chemistry but also provide valuable insights for the design of EMAF-based functional materials with engineered electronic and magnetic properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信