揭示用于光电、太阳能电池和光催化应用的二维Rb3Bi2I6Cl3和Rb3Bi2I3Cl6钙钛矿

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-05-27 DOI:10.1039/D5RA02328A
Shahid Mehmood, Zahid Ali, Shah Rukh Khan, Meznah M. Alanazi, Shaimaa A M Abdelmohsen and Mohamed Mousa
{"title":"揭示用于光电、太阳能电池和光催化应用的二维Rb3Bi2I6Cl3和Rb3Bi2I3Cl6钙钛矿","authors":"Shahid Mehmood, Zahid Ali, Shah Rukh Khan, Meznah M. Alanazi, Shaimaa A M Abdelmohsen and Mohamed Mousa","doi":"10.1039/D5RA02328A","DOIUrl":null,"url":null,"abstract":"<p >The removal of harmful lead from perovskite materials has led to a surge in interest in lead-free perovskite-based solar cells. Using density-functional theory (DFT) and a numerical simulation method using the solar cell capacitance simulator SCAPS-1D. This work aims to advance the field of lead-free perovskite solar cells by conducting a comparative analysis of lead-free perovskite materials. WIEN2k is employed to explore the structural, electronic and optical properties of the two dimensional (2D) halide perovskites Rb<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>6</sub></small>Cl<small><sub>3</sub></small> and Rb<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>3</sub></small>Cl<small><sub>6</sub></small>, while their solar cell (SC) efficiency is estimated using SCAPS-1D. The reported structural properties are aligned with the experimental values. The electronic properties of Rb<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>6</sub></small>Cl<small><sub>3</sub></small> and Rb<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>3</sub></small>Cl<small><sub>6</sub></small> reveal their direct band gap semiconducting nature with band gaps of 2.02 and 1.99 eV, respectively. Their optical properties reveal that the compounds are activated under visible light, making them ideal for optoelectronic device and SC applications. To model the efficiency of these compound-based solar cells, MoO<small><sub>3</sub></small> is optimized as an electron transport layer (ETL); TiO<small><sub>2</sub></small>–SnS<small><sub>2</sub></small> is optimized as a hole transport layer (HTL), and the respective thickness of the ETL, HTL and absorber are optimized as 180, 150 and 900 nm, respectively. Rb<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>6</sub></small>Cl<small><sub>3</sub></small> and Rb<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>3</sub></small>Cl<small><sub>6</sub></small> are used as the absorber layer (AL). Optimized solar cell devices based on FTO/TiO<small><sub>2</sub></small>–SnO<small><sub>2</sub></small>/Rb<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>6</sub></small>Cl<small><sub>3</sub></small> and Rb<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>3</sub></small>Cl<small><sub>6</sub></small>/MoO<small><sub>3</sub></small>/Ni achieved short-circuit current densities of 9.02 and 10.11 mA cm<small><sup>−2</sup></small>, open-circuit voltages of 1.41 and 1.35 V, fill factors of 84.69% and 83.93%, and power conversion efficiencies (PCE) of 11.39% and 11.52%, respectively. Additionally, photocatalytic analysis demonstrates that all of the materials can evolve H<small><sub>2</sub></small> from H<small><sup>+</sup></small> and O<small><sub>2</sub></small> from H<small><sub>2</sub></small>O/O<small><sub>2</sub></small>. Additionally, the compound under study can reduce CO<small><sub>2</sub></small> to produce HCOOH, CO, HCHO, CH<small><sub>4</sub></small>OH and CH<small><sub>4</sub></small>. Based on these findings, 2D perovskites could be used in optoelectronic devices, photovoltaics, and photocatalysis—especially for water splitting and CO<small><sub>2</sub></small> reduction driven by visible light. These results facilitate future studies aimed at developing fully inorganic lead-free perovskite-based photovoltaics and photocatalysts.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 22","pages":" 17420-17434"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra02328a?page=search","citationCount":"0","resultStr":"{\"title\":\"Unveiling 2D Rb3Bi2I6Cl3 and Rb3Bi2I3Cl6 perovskites for optoelectronic, solar cell and photocatalytic applications\",\"authors\":\"Shahid Mehmood, Zahid Ali, Shah Rukh Khan, Meznah M. Alanazi, Shaimaa A M Abdelmohsen and Mohamed Mousa\",\"doi\":\"10.1039/D5RA02328A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The removal of harmful lead from perovskite materials has led to a surge in interest in lead-free perovskite-based solar cells. Using density-functional theory (DFT) and a numerical simulation method using the solar cell capacitance simulator SCAPS-1D. This work aims to advance the field of lead-free perovskite solar cells by conducting a comparative analysis of lead-free perovskite materials. WIEN2k is employed to explore the structural, electronic and optical properties of the two dimensional (2D) halide perovskites Rb<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>6</sub></small>Cl<small><sub>3</sub></small> and Rb<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>3</sub></small>Cl<small><sub>6</sub></small>, while their solar cell (SC) efficiency is estimated using SCAPS-1D. The reported structural properties are aligned with the experimental values. The electronic properties of Rb<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>6</sub></small>Cl<small><sub>3</sub></small> and Rb<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>3</sub></small>Cl<small><sub>6</sub></small> reveal their direct band gap semiconducting nature with band gaps of 2.02 and 1.99 eV, respectively. Their optical properties reveal that the compounds are activated under visible light, making them ideal for optoelectronic device and SC applications. To model the efficiency of these compound-based solar cells, MoO<small><sub>3</sub></small> is optimized as an electron transport layer (ETL); TiO<small><sub>2</sub></small>–SnS<small><sub>2</sub></small> is optimized as a hole transport layer (HTL), and the respective thickness of the ETL, HTL and absorber are optimized as 180, 150 and 900 nm, respectively. Rb<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>6</sub></small>Cl<small><sub>3</sub></small> and Rb<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>3</sub></small>Cl<small><sub>6</sub></small> are used as the absorber layer (AL). Optimized solar cell devices based on FTO/TiO<small><sub>2</sub></small>–SnO<small><sub>2</sub></small>/Rb<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>6</sub></small>Cl<small><sub>3</sub></small> and Rb<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>3</sub></small>Cl<small><sub>6</sub></small>/MoO<small><sub>3</sub></small>/Ni achieved short-circuit current densities of 9.02 and 10.11 mA cm<small><sup>−2</sup></small>, open-circuit voltages of 1.41 and 1.35 V, fill factors of 84.69% and 83.93%, and power conversion efficiencies (PCE) of 11.39% and 11.52%, respectively. Additionally, photocatalytic analysis demonstrates that all of the materials can evolve H<small><sub>2</sub></small> from H<small><sup>+</sup></small> and O<small><sub>2</sub></small> from H<small><sub>2</sub></small>O/O<small><sub>2</sub></small>. Additionally, the compound under study can reduce CO<small><sub>2</sub></small> to produce HCOOH, CO, HCHO, CH<small><sub>4</sub></small>OH and CH<small><sub>4</sub></small>. Based on these findings, 2D perovskites could be used in optoelectronic devices, photovoltaics, and photocatalysis—especially for water splitting and CO<small><sub>2</sub></small> reduction driven by visible light. These results facilitate future studies aimed at developing fully inorganic lead-free perovskite-based photovoltaics and photocatalysts.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 22\",\"pages\":\" 17420-17434\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra02328a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra02328a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra02328a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从钙钛矿材料中去除有害铅导致对无铅钙钛矿基太阳能电池的兴趣激增。利用密度泛函理论(DFT)和太阳能电池电容模拟器SCAPS-1D的数值模拟方法。本工作旨在通过对无铅钙钛矿材料的比较分析,推动无铅钙钛矿太阳能电池领域的发展。利用WIEN2k研究了二维(2D)卤化物钙钛矿Rb3Bi2I6Cl3和Rb3Bi2I3Cl6的结构、电子和光学性质,同时利用SCAPS-1D估计了它们的太阳能电池(SC)效率。报告的结构性能与实验值一致。Rb3Bi2I6Cl3和Rb3Bi2I3Cl6的电子性质显示其直接带隙半导体性质,带隙分别为2.02和1.99 eV。它们的光学性质表明,这些化合物在可见光下被激活,使它们成为光电器件和SC应用的理想选择。为了模拟这些化合物基太阳能电池的效率,MoO3被优化为电子传输层(ETL);将TiO2-SnS2优化为空穴传输层(HTL), ETL、HTL和吸收层的厚度分别优化为180、150和900 nm。采用Rb3Bi2I6Cl3和Rb3Bi2I3Cl6作为吸收层(AL)。优化后的FTO/ TiO2-SnO2 /Rb3Bi2I6Cl3和Rb3Bi2I3Cl6/MoO3/Ni太阳能电池器件的短路电流密度分别为9.02和10.11 mA cm−2,开路电压分别为1.41和1.35 V,填充系数分别为84.69%和83.93%,功率转换效率(PCE)分别为11.39%和11.52%。此外,光催化分析表明,所有材料都可以从H+中生成H2,从H2O/O2中生成O2。此外,所研究的化合物还能还原CO2生成HCOOH、CO、HCHO、CH4OH和CH4。基于这些发现,二维钙钛矿可用于光电器件、光伏和光催化——特别是在可见光驱动下的水分解和二氧化碳还原。这些结果促进了未来旨在开发完全无机无铅钙钛矿基光伏和光催化剂的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling 2D Rb3Bi2I6Cl3 and Rb3Bi2I3Cl6 perovskites for optoelectronic, solar cell and photocatalytic applications

The removal of harmful lead from perovskite materials has led to a surge in interest in lead-free perovskite-based solar cells. Using density-functional theory (DFT) and a numerical simulation method using the solar cell capacitance simulator SCAPS-1D. This work aims to advance the field of lead-free perovskite solar cells by conducting a comparative analysis of lead-free perovskite materials. WIEN2k is employed to explore the structural, electronic and optical properties of the two dimensional (2D) halide perovskites Rb3Bi2I6Cl3 and Rb3Bi2I3Cl6, while their solar cell (SC) efficiency is estimated using SCAPS-1D. The reported structural properties are aligned with the experimental values. The electronic properties of Rb3Bi2I6Cl3 and Rb3Bi2I3Cl6 reveal their direct band gap semiconducting nature with band gaps of 2.02 and 1.99 eV, respectively. Their optical properties reveal that the compounds are activated under visible light, making them ideal for optoelectronic device and SC applications. To model the efficiency of these compound-based solar cells, MoO3 is optimized as an electron transport layer (ETL); TiO2–SnS2 is optimized as a hole transport layer (HTL), and the respective thickness of the ETL, HTL and absorber are optimized as 180, 150 and 900 nm, respectively. Rb3Bi2I6Cl3 and Rb3Bi2I3Cl6 are used as the absorber layer (AL). Optimized solar cell devices based on FTO/TiO2–SnO2/Rb3Bi2I6Cl3 and Rb3Bi2I3Cl6/MoO3/Ni achieved short-circuit current densities of 9.02 and 10.11 mA cm−2, open-circuit voltages of 1.41 and 1.35 V, fill factors of 84.69% and 83.93%, and power conversion efficiencies (PCE) of 11.39% and 11.52%, respectively. Additionally, photocatalytic analysis demonstrates that all of the materials can evolve H2 from H+ and O2 from H2O/O2. Additionally, the compound under study can reduce CO2 to produce HCOOH, CO, HCHO, CH4OH and CH4. Based on these findings, 2D perovskites could be used in optoelectronic devices, photovoltaics, and photocatalysis—especially for water splitting and CO2 reduction driven by visible light. These results facilitate future studies aimed at developing fully inorganic lead-free perovskite-based photovoltaics and photocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信