{"title":"采用温和碱性氧化系统的一锅木质纤维素分馏,实现高效全糖转化和芳香单体生产†","authors":"Ziyi Yang, Feiyue Shen, Weihong Dai, Zhiwen Zeng, Jiayi Xu, Li Zhao, Wei Qi, Jinguang Hu, Dong Tian and Fei Shen","doi":"10.1039/D5GC00999E","DOIUrl":null,"url":null,"abstract":"<p >The targeted extraction of native-like lignin while retaining highly accessible carbohydrate substrates in a one-pot biorefinery is a promising strategy but suffers from technical challenges. In this study, a mild alkaline-oxidation system (tetramethylammonium hydroxide/urea hydrogen peroxide, TMAH/UHP) was tailored to fractionate lignocellulose into protolignin and a carbohydrate-rich substrate for further renewable energy upgrading. During the TMAH/UHP biorefinery, the diverse reaction intensities and solvent concentrations were investigated to achieve a balance between lignin structure integrity and valuable carbohydrate recovery. A detailed study into lignin structure evolution was conducted to understand how the TMAH/UHP system extracted protolignin efficiently and maintained the high-accessibility of carbohydrate solids. The protolignin with a high content of β-O-4 linkages (45.1%–62.8%) was extracted <em>via</em> the dominant cleavage of lignin-carbohydrate ester bonds. Additionally, the high recovery of carbohydrates achieved an excellent whole-sugar conversion capacity (100.0% glucose yield and >50.0% xylose yield), and the protolignin exhibited feasible downstream valorization for the production of aromatic monomers <em>via</em> a catalytic oxidation process. Meanwhile, the spent solvent was enriched with abundant urea components, which could be used as water-soluble fertilizer for crop growth. This one-pot biorefinery method mitigates the challenge in extracting protolignin without compromising carbohydrate value under mild conditions, which is essential for a sustainable and scale-up future of biorefinery.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 21","pages":" 6244-6259"},"PeriodicalIF":9.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-pot lignocellulose fractionation towards efficient whole sugar conversion and aromatic monomer production using a mild alkaline oxidation system†\",\"authors\":\"Ziyi Yang, Feiyue Shen, Weihong Dai, Zhiwen Zeng, Jiayi Xu, Li Zhao, Wei Qi, Jinguang Hu, Dong Tian and Fei Shen\",\"doi\":\"10.1039/D5GC00999E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The targeted extraction of native-like lignin while retaining highly accessible carbohydrate substrates in a one-pot biorefinery is a promising strategy but suffers from technical challenges. In this study, a mild alkaline-oxidation system (tetramethylammonium hydroxide/urea hydrogen peroxide, TMAH/UHP) was tailored to fractionate lignocellulose into protolignin and a carbohydrate-rich substrate for further renewable energy upgrading. During the TMAH/UHP biorefinery, the diverse reaction intensities and solvent concentrations were investigated to achieve a balance between lignin structure integrity and valuable carbohydrate recovery. A detailed study into lignin structure evolution was conducted to understand how the TMAH/UHP system extracted protolignin efficiently and maintained the high-accessibility of carbohydrate solids. The protolignin with a high content of β-O-4 linkages (45.1%–62.8%) was extracted <em>via</em> the dominant cleavage of lignin-carbohydrate ester bonds. Additionally, the high recovery of carbohydrates achieved an excellent whole-sugar conversion capacity (100.0% glucose yield and >50.0% xylose yield), and the protolignin exhibited feasible downstream valorization for the production of aromatic monomers <em>via</em> a catalytic oxidation process. Meanwhile, the spent solvent was enriched with abundant urea components, which could be used as water-soluble fertilizer for crop growth. This one-pot biorefinery method mitigates the challenge in extracting protolignin without compromising carbohydrate value under mild conditions, which is essential for a sustainable and scale-up future of biorefinery.</p>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\" 21\",\"pages\":\" 6244-6259\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc00999e\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc00999e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
One-pot lignocellulose fractionation towards efficient whole sugar conversion and aromatic monomer production using a mild alkaline oxidation system†
The targeted extraction of native-like lignin while retaining highly accessible carbohydrate substrates in a one-pot biorefinery is a promising strategy but suffers from technical challenges. In this study, a mild alkaline-oxidation system (tetramethylammonium hydroxide/urea hydrogen peroxide, TMAH/UHP) was tailored to fractionate lignocellulose into protolignin and a carbohydrate-rich substrate for further renewable energy upgrading. During the TMAH/UHP biorefinery, the diverse reaction intensities and solvent concentrations were investigated to achieve a balance between lignin structure integrity and valuable carbohydrate recovery. A detailed study into lignin structure evolution was conducted to understand how the TMAH/UHP system extracted protolignin efficiently and maintained the high-accessibility of carbohydrate solids. The protolignin with a high content of β-O-4 linkages (45.1%–62.8%) was extracted via the dominant cleavage of lignin-carbohydrate ester bonds. Additionally, the high recovery of carbohydrates achieved an excellent whole-sugar conversion capacity (100.0% glucose yield and >50.0% xylose yield), and the protolignin exhibited feasible downstream valorization for the production of aromatic monomers via a catalytic oxidation process. Meanwhile, the spent solvent was enriched with abundant urea components, which could be used as water-soluble fertilizer for crop growth. This one-pot biorefinery method mitigates the challenge in extracting protolignin without compromising carbohydrate value under mild conditions, which is essential for a sustainable and scale-up future of biorefinery.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.