Oriyomi Ogunbanjo, Paramaconi Rodríguez and Paul Anderson
{"title":"二氧化碳转化中的MOF电催化剂:研究趋势、挑战和前景的批判性分析","authors":"Oriyomi Ogunbanjo, Paramaconi Rodríguez and Paul Anderson","doi":"10.1039/D4QM01060D","DOIUrl":null,"url":null,"abstract":"<p >Achieving sustainable energy and a clean environment is a strong driving force behind the exploration of the electrocatalytic potential of MOFs for CO<small><sub>2</sub></small> conversion. The growing interest in the application of MOFs as electrocatalysts for CO<small><sub>2</sub></small>RR has been attributed to their high surface area and excellent catalytic properties. MOFs have been deployed in their pristine form as catalysts, as porous cavity supports for the incorporation of catalytic active material, or as precursors to obtain single-atom catalysts, showing that they can reduce CO<small><sub>2</sub></small> into CO, formic acid and even hydrocarbons and alcohols. Despite these advantages and promising early results, they still have several challenges to overcome, such as poor electrical conductivity, stability and selectivity, and high overpotential, which would limit their practical application as electrocatalysts for CO<small><sub>2</sub></small> reduction. In this review, various strategies to improve the electrocatalytic performance of MOFs are highlighted and directions that future studies in this field may take identified.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 11","pages":" 1650-1680"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d4qm01060d?page=search","citationCount":"0","resultStr":"{\"title\":\"MOF electrocatalysts in CO2 conversion: critical analysis of research trends, challenges and prospects\",\"authors\":\"Oriyomi Ogunbanjo, Paramaconi Rodríguez and Paul Anderson\",\"doi\":\"10.1039/D4QM01060D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Achieving sustainable energy and a clean environment is a strong driving force behind the exploration of the electrocatalytic potential of MOFs for CO<small><sub>2</sub></small> conversion. The growing interest in the application of MOFs as electrocatalysts for CO<small><sub>2</sub></small>RR has been attributed to their high surface area and excellent catalytic properties. MOFs have been deployed in their pristine form as catalysts, as porous cavity supports for the incorporation of catalytic active material, or as precursors to obtain single-atom catalysts, showing that they can reduce CO<small><sub>2</sub></small> into CO, formic acid and even hydrocarbons and alcohols. Despite these advantages and promising early results, they still have several challenges to overcome, such as poor electrical conductivity, stability and selectivity, and high overpotential, which would limit their practical application as electrocatalysts for CO<small><sub>2</sub></small> reduction. In this review, various strategies to improve the electrocatalytic performance of MOFs are highlighted and directions that future studies in this field may take identified.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 11\",\"pages\":\" 1650-1680\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d4qm01060d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm01060d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm01060d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
MOF electrocatalysts in CO2 conversion: critical analysis of research trends, challenges and prospects
Achieving sustainable energy and a clean environment is a strong driving force behind the exploration of the electrocatalytic potential of MOFs for CO2 conversion. The growing interest in the application of MOFs as electrocatalysts for CO2RR has been attributed to their high surface area and excellent catalytic properties. MOFs have been deployed in their pristine form as catalysts, as porous cavity supports for the incorporation of catalytic active material, or as precursors to obtain single-atom catalysts, showing that they can reduce CO2 into CO, formic acid and even hydrocarbons and alcohols. Despite these advantages and promising early results, they still have several challenges to overcome, such as poor electrical conductivity, stability and selectivity, and high overpotential, which would limit their practical application as electrocatalysts for CO2 reduction. In this review, various strategies to improve the electrocatalytic performance of MOFs are highlighted and directions that future studies in this field may take identified.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.