高压电化学双层电容器用环保型NaCl甘油基深共晶电解液†

IF 9.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Green Chemistry Pub Date : 2025-05-01 DOI:10.1039/d4gc06369d
Daniele Motta , Alessandro Damin , Hamideh Darjazi , Stefano Nejrotti , Federica Piccirilli , Giovanni Birarda , Claudia Barolo , Claudio Gerbaldi , Giuseppe Antonio Elia , Matteo Bonomo
{"title":"高压电化学双层电容器用环保型NaCl甘油基深共晶电解液†","authors":"Daniele Motta ,&nbsp;Alessandro Damin ,&nbsp;Hamideh Darjazi ,&nbsp;Stefano Nejrotti ,&nbsp;Federica Piccirilli ,&nbsp;Giovanni Birarda ,&nbsp;Claudia Barolo ,&nbsp;Claudio Gerbaldi ,&nbsp;Giuseppe Antonio Elia ,&nbsp;Matteo Bonomo","doi":"10.1039/d4gc06369d","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, we propose eco-friendly electrolytes based on sodium chloride as a hydrogen bond acceptor and glycerol as a hydrogen bond donor, as alternatives to toxic, flammable and unsustainable electrolytes commonly used in electrochemical energy storage systems. By means of an in-depth multi-technique investigation, including Raman and FT-FIR spectroscopy, of the formulated electrolytes, we point out the effect of the structuring of the system on the transport and electrochemical properties. The 1 : 10 molar ratio mixture proves to be a deep eutectic solvent (DES), showing good room temperature ionic conductivity (0.186 mS cm<sup>−1</sup>) and electrochemical stability (≈3 V). When implemented as electrolyte in an activated-carbon electrochemical double layer capacitor, this DES exhibits superior performance compared to mixtures with different molar ratio and those containing ethylene glycol as the hydrogen bond donor, with a high operational voltage (2.6 V), a specific capacitance of 14.1 F g<sup>−1</sup>, and a remarkable cycling stability. These findings highlight the potential of glycerol-based DESs as alternative electrolytes for sustainable electrochemical energy storage applications.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 21","pages":"Pages 6002-6015"},"PeriodicalIF":9.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly NaCl glycerol-based deep eutectic electrolyte for high-voltage electrochemical double layer capacitor†\",\"authors\":\"Daniele Motta ,&nbsp;Alessandro Damin ,&nbsp;Hamideh Darjazi ,&nbsp;Stefano Nejrotti ,&nbsp;Federica Piccirilli ,&nbsp;Giovanni Birarda ,&nbsp;Claudia Barolo ,&nbsp;Claudio Gerbaldi ,&nbsp;Giuseppe Antonio Elia ,&nbsp;Matteo Bonomo\",\"doi\":\"10.1039/d4gc06369d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Herein, we propose eco-friendly electrolytes based on sodium chloride as a hydrogen bond acceptor and glycerol as a hydrogen bond donor, as alternatives to toxic, flammable and unsustainable electrolytes commonly used in electrochemical energy storage systems. By means of an in-depth multi-technique investigation, including Raman and FT-FIR spectroscopy, of the formulated electrolytes, we point out the effect of the structuring of the system on the transport and electrochemical properties. The 1 : 10 molar ratio mixture proves to be a deep eutectic solvent (DES), showing good room temperature ionic conductivity (0.186 mS cm<sup>−1</sup>) and electrochemical stability (≈3 V). When implemented as electrolyte in an activated-carbon electrochemical double layer capacitor, this DES exhibits superior performance compared to mixtures with different molar ratio and those containing ethylene glycol as the hydrogen bond donor, with a high operational voltage (2.6 V), a specific capacitance of 14.1 F g<sup>−1</sup>, and a remarkable cycling stability. These findings highlight the potential of glycerol-based DESs as alternative electrolytes for sustainable electrochemical energy storage applications.</div></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\"27 21\",\"pages\":\"Pages 6002-6015\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926225003450\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225003450","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们提出了基于氯化钠作为氢键受体和甘油作为氢键供体的环保电解质,作为电化学储能系统中常用的有毒、易燃和不可持续电解质的替代品。通过拉曼光谱和傅里叶变换红外光谱等多种技术的深入研究,指出了体系结构对电解质输运和电化学性能的影响。摩尔比为1:10的混合物是一种深度共晶溶剂(DES),具有良好的室温离子电导率(0.186 mS cm−1)和电化学稳定性(≈3 V)。在活性炭双层电化学电容器中作为电解液时,与不同摩尔比的混合物和含乙二醇作为氢键供体的混合物相比,该DES表现出优异的性能,具有2.6 V的高工作电压,14.1 F g−1的比电容和显著的循环稳定性。这些发现突出了甘油基DESs作为可持续电化学储能应用的替代电解质的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eco-friendly NaCl glycerol-based deep eutectic electrolyte for high-voltage electrochemical double layer capacitor†
Herein, we propose eco-friendly electrolytes based on sodium chloride as a hydrogen bond acceptor and glycerol as a hydrogen bond donor, as alternatives to toxic, flammable and unsustainable electrolytes commonly used in electrochemical energy storage systems. By means of an in-depth multi-technique investigation, including Raman and FT-FIR spectroscopy, of the formulated electrolytes, we point out the effect of the structuring of the system on the transport and electrochemical properties. The 1 : 10 molar ratio mixture proves to be a deep eutectic solvent (DES), showing good room temperature ionic conductivity (0.186 mS cm−1) and electrochemical stability (≈3 V). When implemented as electrolyte in an activated-carbon electrochemical double layer capacitor, this DES exhibits superior performance compared to mixtures with different molar ratio and those containing ethylene glycol as the hydrogen bond donor, with a high operational voltage (2.6 V), a specific capacitance of 14.1 F g−1, and a remarkable cycling stability. These findings highlight the potential of glycerol-based DESs as alternative electrolytes for sustainable electrochemical energy storage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信