{"title":"探索易失性fpga加速能量收集物联网应用的潜力","authors":"Aalaa M.A. Babai;Koji Inoue","doi":"10.1109/LCA.2025.3563105","DOIUrl":null,"url":null,"abstract":"Low-power volatile FPGAs (VFPGAs) naturally meet the intertwined processing and flexibility demands of IoT devices. However, as IoT devices shift toward Energy Harvesting (EH) for self-sustained operation, VFPGAs are overlooked because they struggle under harvested power. Their volatile SRAM configuration memory cells frequently lose their data, causing high reconfiguration penalties. These penalties grow with FPGAs’ resource usage, limiting it under EH. Still, advances in low-power FPGAs and energy-buffering systems’ efficiency motivate us to explore EH-powered FPGAs. Thus, we analyze the interplay of their resources, performance, and reconfiguration; simulate their operation under different EH conditions; and show how they can be utilized up to an application- and EH-dependent threshold.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"137-140"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Volatile FPGAs Potential for Accelerating Energy-Harvesting IoT Applications\",\"authors\":\"Aalaa M.A. Babai;Koji Inoue\",\"doi\":\"10.1109/LCA.2025.3563105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-power volatile FPGAs (VFPGAs) naturally meet the intertwined processing and flexibility demands of IoT devices. However, as IoT devices shift toward Energy Harvesting (EH) for self-sustained operation, VFPGAs are overlooked because they struggle under harvested power. Their volatile SRAM configuration memory cells frequently lose their data, causing high reconfiguration penalties. These penalties grow with FPGAs’ resource usage, limiting it under EH. Still, advances in low-power FPGAs and energy-buffering systems’ efficiency motivate us to explore EH-powered FPGAs. Thus, we analyze the interplay of their resources, performance, and reconfiguration; simulate their operation under different EH conditions; and show how they can be utilized up to an application- and EH-dependent threshold.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"24 1\",\"pages\":\"137-140\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10972049/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10972049/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Exploring Volatile FPGAs Potential for Accelerating Energy-Harvesting IoT Applications
Low-power volatile FPGAs (VFPGAs) naturally meet the intertwined processing and flexibility demands of IoT devices. However, as IoT devices shift toward Energy Harvesting (EH) for self-sustained operation, VFPGAs are overlooked because they struggle under harvested power. Their volatile SRAM configuration memory cells frequently lose their data, causing high reconfiguration penalties. These penalties grow with FPGAs’ resource usage, limiting it under EH. Still, advances in low-power FPGAs and energy-buffering systems’ efficiency motivate us to explore EH-powered FPGAs. Thus, we analyze the interplay of their resources, performance, and reconfiguration; simulate their operation under different EH conditions; and show how they can be utilized up to an application- and EH-dependent threshold.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.