Lingli Zhu, Jin Cao, Hongmin Yang, Dekui Shen, Haitao Hu and Mengjia Dou
{"title":"用于多色发光二极管的柠檬皮衍生碳量子点的高效制备","authors":"Lingli Zhu, Jin Cao, Hongmin Yang, Dekui Shen, Haitao Hu and Mengjia Dou","doi":"10.1039/D5GC01179E","DOIUrl":null,"url":null,"abstract":"<p >Biomass-derived carbon quantum dots (CQDs) have emerged as a promising sustainable alternative to conventional semiconductor quantum dots for light-emitting diode (LED) applications, offering distinct advantages in terms of renewability, low toxicity, and environmental friendliness. However, the efficient preparation of multicolor biomass-derived CQDs remains a critical challenge for practical implementation. In this study, lemon peel was screened as the optimal precursor from 26 types of agricultural and forestry residues, landscaping wastes, and food wastes. A green synthesis strategy involving hydrothermal carbonization coupled with controlled heteroatom doping was developed, which enabled the preparation of multicolor CQDs with superior photoluminescence properties. The synthesized CQDs exhibited tunable emission wavelengths (440–655 nm), high fluorescence quantum yields (4.98–35.58%), and exceptional photostability. High-efficiency LEDs were successfully fabricated by constructing a multilayer device structure using a mixture of multicolor biomass-derived CQDs and polymers. The CQD-based LEDs exhibited high color rendering indices (81.8–92.9) and a wide color temperature range (3912–6964 K) covering the visible spectrum while maintaining a decay rate below 30% over an operating lifetime of 11 832–12 815 h. This work not only provides a novel route for low-cost and sustainable synthesis of CQDs but also establishes theoretical and technical foundations for green electronic devices, accelerating the application of biomass resources in high-value optoelectronic devices.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 21","pages":" 6184-6195"},"PeriodicalIF":9.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient fabrication of lemon peel-derived carbon quantum dots for multicolor light-emitting diodes†\",\"authors\":\"Lingli Zhu, Jin Cao, Hongmin Yang, Dekui Shen, Haitao Hu and Mengjia Dou\",\"doi\":\"10.1039/D5GC01179E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Biomass-derived carbon quantum dots (CQDs) have emerged as a promising sustainable alternative to conventional semiconductor quantum dots for light-emitting diode (LED) applications, offering distinct advantages in terms of renewability, low toxicity, and environmental friendliness. However, the efficient preparation of multicolor biomass-derived CQDs remains a critical challenge for practical implementation. In this study, lemon peel was screened as the optimal precursor from 26 types of agricultural and forestry residues, landscaping wastes, and food wastes. A green synthesis strategy involving hydrothermal carbonization coupled with controlled heteroatom doping was developed, which enabled the preparation of multicolor CQDs with superior photoluminescence properties. The synthesized CQDs exhibited tunable emission wavelengths (440–655 nm), high fluorescence quantum yields (4.98–35.58%), and exceptional photostability. High-efficiency LEDs were successfully fabricated by constructing a multilayer device structure using a mixture of multicolor biomass-derived CQDs and polymers. The CQD-based LEDs exhibited high color rendering indices (81.8–92.9) and a wide color temperature range (3912–6964 K) covering the visible spectrum while maintaining a decay rate below 30% over an operating lifetime of 11 832–12 815 h. This work not only provides a novel route for low-cost and sustainable synthesis of CQDs but also establishes theoretical and technical foundations for green electronic devices, accelerating the application of biomass resources in high-value optoelectronic devices.</p>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\" 21\",\"pages\":\" 6184-6195\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc01179e\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc01179e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Highly efficient fabrication of lemon peel-derived carbon quantum dots for multicolor light-emitting diodes†
Biomass-derived carbon quantum dots (CQDs) have emerged as a promising sustainable alternative to conventional semiconductor quantum dots for light-emitting diode (LED) applications, offering distinct advantages in terms of renewability, low toxicity, and environmental friendliness. However, the efficient preparation of multicolor biomass-derived CQDs remains a critical challenge for practical implementation. In this study, lemon peel was screened as the optimal precursor from 26 types of agricultural and forestry residues, landscaping wastes, and food wastes. A green synthesis strategy involving hydrothermal carbonization coupled with controlled heteroatom doping was developed, which enabled the preparation of multicolor CQDs with superior photoluminescence properties. The synthesized CQDs exhibited tunable emission wavelengths (440–655 nm), high fluorescence quantum yields (4.98–35.58%), and exceptional photostability. High-efficiency LEDs were successfully fabricated by constructing a multilayer device structure using a mixture of multicolor biomass-derived CQDs and polymers. The CQD-based LEDs exhibited high color rendering indices (81.8–92.9) and a wide color temperature range (3912–6964 K) covering the visible spectrum while maintaining a decay rate below 30% over an operating lifetime of 11 832–12 815 h. This work not only provides a novel route for low-cost and sustainable synthesis of CQDs but also establishes theoretical and technical foundations for green electronic devices, accelerating the application of biomass resources in high-value optoelectronic devices.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.