基于模糊扩展PI观测器的宽温度范围LiFePO4电池充电状态估计

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Daren Chen, Li Sun, Fukang Shen, Guangxin Gao, Yunjiang Lou, Guangzhong Dong
{"title":"基于模糊扩展PI观测器的宽温度范围LiFePO4电池充电状态估计","authors":"Daren Chen,&nbsp;Li Sun,&nbsp;Fukang Shen,&nbsp;Guangxin Gao,&nbsp;Yunjiang Lou,&nbsp;Guangzhong Dong","doi":"10.1016/j.est.2025.116964","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate state of charge (SOC) estimation for LiFePO<sub>4</sub> (LFP) batteries across broad temperature ranges is a critical challenge. This study proposes an adaptive fuzzy extended proportional–integral (PI) observer framework to enhance SOC estimation accuracy and robustness under these demanding conditions. First, a temperature-compensated capacity model (TCCM) is proposed to enhance the Ampere-hour (Ah) integral method for better temperature-dependent capacity description, which motivates revised SOC definitions to provide more physically meaningful state representations (SOC<sub>T</sub> and SOC<sub>S</sub>) across temperatures. Second, to account for the effect of hysteresis on SOC assessment, a temperature-adaptive open-circuit voltage (OCV) tracking model is developed by incorporating the second-order equivalent circuit model (ECM) with temperature-dependent hysteresis compensation. Third, to minimize errors from model uncertainty when fusing the enhanced Ah integral method and OCV tracker, a fuzzy extended PI observer is employed to intelligently adjust its gains based on real-time conditions for adaptive SOC estimation. Experimental validation using demanding dynamic profiles at temperatures from −10 <span><math><mo>°</mo></math></span>C to 10 <span><math><mo>°</mo></math></span>C demonstrates the framework’s effectiveness. The results demonstrate that the proposed framework can accurately provide physically meaningful states across broad temperature ranges, with error of SOC<sub>T</sub> consistently below 2.5% across all tested conditions and SOC<sub>S</sub> showing end-point errors of 3%, ensuring performance for real-world EV applications.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"128 ","pages":"Article 116964"},"PeriodicalIF":8.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fuzzy extended PI observer for state of charge estimation of LiFePO4 batteries across broad temperature ranges\",\"authors\":\"Daren Chen,&nbsp;Li Sun,&nbsp;Fukang Shen,&nbsp;Guangxin Gao,&nbsp;Yunjiang Lou,&nbsp;Guangzhong Dong\",\"doi\":\"10.1016/j.est.2025.116964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate state of charge (SOC) estimation for LiFePO<sub>4</sub> (LFP) batteries across broad temperature ranges is a critical challenge. This study proposes an adaptive fuzzy extended proportional–integral (PI) observer framework to enhance SOC estimation accuracy and robustness under these demanding conditions. First, a temperature-compensated capacity model (TCCM) is proposed to enhance the Ampere-hour (Ah) integral method for better temperature-dependent capacity description, which motivates revised SOC definitions to provide more physically meaningful state representations (SOC<sub>T</sub> and SOC<sub>S</sub>) across temperatures. Second, to account for the effect of hysteresis on SOC assessment, a temperature-adaptive open-circuit voltage (OCV) tracking model is developed by incorporating the second-order equivalent circuit model (ECM) with temperature-dependent hysteresis compensation. Third, to minimize errors from model uncertainty when fusing the enhanced Ah integral method and OCV tracker, a fuzzy extended PI observer is employed to intelligently adjust its gains based on real-time conditions for adaptive SOC estimation. Experimental validation using demanding dynamic profiles at temperatures from −10 <span><math><mo>°</mo></math></span>C to 10 <span><math><mo>°</mo></math></span>C demonstrates the framework’s effectiveness. The results demonstrate that the proposed framework can accurately provide physically meaningful states across broad temperature ranges, with error of SOC<sub>T</sub> consistently below 2.5% across all tested conditions and SOC<sub>S</sub> showing end-point errors of 3%, ensuring performance for real-world EV applications.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"128 \",\"pages\":\"Article 116964\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X25016779\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25016779","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

LiFePO4 (LFP)电池在宽温度范围内的准确充电状态(SOC)估计是一个关键挑战。本文提出了一种自适应模糊扩展比例积分观测器框架,以提高在这些苛刻条件下SOC估计的精度和鲁棒性。首先,提出了一种温度补偿容量模型(TCCM),以增强安培-小时(Ah)积分方法,以更好地描述温度相关的容量,这促使修订的SOC定义提供更有物理意义的状态表示(SOCT和SOCS)。其次,为了考虑迟滞对SOC评估的影响,将二阶等效电路模型(ECM)与温度相关的迟滞补偿相结合,建立了温度自适应开路电压(OCV)跟踪模型。第三,在融合增强Ah积分法和OCV跟踪器时,为了最小化模型不确定性带来的误差,采用模糊扩展PI观测器根据实时情况智能调整增益,实现自适应SOC估计。在- 10°C至10°C的温度下使用苛刻的动态剖面进行实验验证,证明了该框架的有效性。结果表明,所提出的框架可以在广泛的温度范围内准确地提供有物理意义的状态,在所有测试条件下,SOCS的误差始终低于2.5%,SOCS的终点误差为3%,确保了实际电动汽车应用的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fuzzy extended PI observer for state of charge estimation of LiFePO4 batteries across broad temperature ranges
Accurate state of charge (SOC) estimation for LiFePO4 (LFP) batteries across broad temperature ranges is a critical challenge. This study proposes an adaptive fuzzy extended proportional–integral (PI) observer framework to enhance SOC estimation accuracy and robustness under these demanding conditions. First, a temperature-compensated capacity model (TCCM) is proposed to enhance the Ampere-hour (Ah) integral method for better temperature-dependent capacity description, which motivates revised SOC definitions to provide more physically meaningful state representations (SOCT and SOCS) across temperatures. Second, to account for the effect of hysteresis on SOC assessment, a temperature-adaptive open-circuit voltage (OCV) tracking model is developed by incorporating the second-order equivalent circuit model (ECM) with temperature-dependent hysteresis compensation. Third, to minimize errors from model uncertainty when fusing the enhanced Ah integral method and OCV tracker, a fuzzy extended PI observer is employed to intelligently adjust its gains based on real-time conditions for adaptive SOC estimation. Experimental validation using demanding dynamic profiles at temperatures from −10 °C to 10 °C demonstrates the framework’s effectiveness. The results demonstrate that the proposed framework can accurately provide physically meaningful states across broad temperature ranges, with error of SOCT consistently below 2.5% across all tested conditions and SOCS showing end-point errors of 3%, ensuring performance for real-world EV applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信