基于强化学习的动态定价在变型生产中的应用

IF 5.4 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Florian Stamer, Matthias Henzi, Gisela Lanza
{"title":"基于强化学习的动态定价在变型生产中的应用","authors":"Florian Stamer,&nbsp;Matthias Henzi,&nbsp;Gisela Lanza","doi":"10.1016/j.cirpj.2025.05.004","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of variant production, the increasing volatility and customer requirements challenge the profitability of manufacturers. A promising approach to mitigate these challenges could be a dynamic pricing. An intelligent design of a continuous delivery-time-price function allows customers to choose based on their preferences and demand may be shifted to level any peaks. This way, profit, service level, and capacity usage could be improved. This work develops a dynamic pricing model based on reinforcement learning applied to a use case of the automation industry. The results show that the dynamic pricing model performs better than current methods in practice.</div></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"60 ","pages":"Pages 248-259"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of dynamic pricing for variant production using reinforcement learning\",\"authors\":\"Florian Stamer,&nbsp;Matthias Henzi,&nbsp;Gisela Lanza\",\"doi\":\"10.1016/j.cirpj.2025.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the context of variant production, the increasing volatility and customer requirements challenge the profitability of manufacturers. A promising approach to mitigate these challenges could be a dynamic pricing. An intelligent design of a continuous delivery-time-price function allows customers to choose based on their preferences and demand may be shifted to level any peaks. This way, profit, service level, and capacity usage could be improved. This work develops a dynamic pricing model based on reinforcement learning applied to a use case of the automation industry. The results show that the dynamic pricing model performs better than current methods in practice.</div></div>\",\"PeriodicalId\":56011,\"journal\":{\"name\":\"CIRP Journal of Manufacturing Science and Technology\",\"volume\":\"60 \",\"pages\":\"Pages 248-259\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIRP Journal of Manufacturing Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755581725000719\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581725000719","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

在变型生产的背景下,不断增加的波动性和客户需求对制造商的盈利能力提出了挑战。缓解这些挑战的一个有希望的方法可能是动态定价。智能设计的连续交货时间-价格功能允许客户根据自己的喜好进行选择,需求可能会转移到任何峰值。通过这种方式,可以提高利润、服务水平和容量使用。这项工作开发了一个基于强化学习的动态定价模型,应用于自动化行业的一个用例。结果表明,该模型在实际应用中优于现有的定价方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of dynamic pricing for variant production using reinforcement learning
In the context of variant production, the increasing volatility and customer requirements challenge the profitability of manufacturers. A promising approach to mitigate these challenges could be a dynamic pricing. An intelligent design of a continuous delivery-time-price function allows customers to choose based on their preferences and demand may be shifted to level any peaks. This way, profit, service level, and capacity usage could be improved. This work develops a dynamic pricing model based on reinforcement learning applied to a use case of the automation industry. The results show that the dynamic pricing model performs better than current methods in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CIRP Journal of Manufacturing Science and Technology
CIRP Journal of Manufacturing Science and Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
6.20%
发文量
166
审稿时长
63 days
期刊介绍: The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信