{"title":"基于强化学习的动态定价在变型生产中的应用","authors":"Florian Stamer, Matthias Henzi, Gisela Lanza","doi":"10.1016/j.cirpj.2025.05.004","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of variant production, the increasing volatility and customer requirements challenge the profitability of manufacturers. A promising approach to mitigate these challenges could be a dynamic pricing. An intelligent design of a continuous delivery-time-price function allows customers to choose based on their preferences and demand may be shifted to level any peaks. This way, profit, service level, and capacity usage could be improved. This work develops a dynamic pricing model based on reinforcement learning applied to a use case of the automation industry. The results show that the dynamic pricing model performs better than current methods in practice.</div></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"60 ","pages":"Pages 248-259"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of dynamic pricing for variant production using reinforcement learning\",\"authors\":\"Florian Stamer, Matthias Henzi, Gisela Lanza\",\"doi\":\"10.1016/j.cirpj.2025.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the context of variant production, the increasing volatility and customer requirements challenge the profitability of manufacturers. A promising approach to mitigate these challenges could be a dynamic pricing. An intelligent design of a continuous delivery-time-price function allows customers to choose based on their preferences and demand may be shifted to level any peaks. This way, profit, service level, and capacity usage could be improved. This work develops a dynamic pricing model based on reinforcement learning applied to a use case of the automation industry. The results show that the dynamic pricing model performs better than current methods in practice.</div></div>\",\"PeriodicalId\":56011,\"journal\":{\"name\":\"CIRP Journal of Manufacturing Science and Technology\",\"volume\":\"60 \",\"pages\":\"Pages 248-259\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIRP Journal of Manufacturing Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755581725000719\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581725000719","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Application of dynamic pricing for variant production using reinforcement learning
In the context of variant production, the increasing volatility and customer requirements challenge the profitability of manufacturers. A promising approach to mitigate these challenges could be a dynamic pricing. An intelligent design of a continuous delivery-time-price function allows customers to choose based on their preferences and demand may be shifted to level any peaks. This way, profit, service level, and capacity usage could be improved. This work develops a dynamic pricing model based on reinforcement learning applied to a use case of the automation industry. The results show that the dynamic pricing model performs better than current methods in practice.
期刊介绍:
The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.