{"title":"加权点稳定曲线的模空间与Grassmann流形的环拓扑","authors":"Victor M. Buchstaber , Svjetlana Terzić","doi":"10.1016/j.geomphys.2025.105533","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we establish fundamental relations between the famous problem of compactifications of the moduli space <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span> of ordered <em>n</em> distinct points on <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> and toric topology of the complex Grassmann manifolds <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span>. The best known is the Deligne-Mumford compactification <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span>. The Losev-Manin compactification <span><math><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> is also closely related to important questions in mathematical physics and toric geometry. These compactifications belong to the family of Hassett compactifications <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span> of moduli spaces of weighted pointed stable curves. In this paper we show that the orbit space <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub><mo>/</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> of complex Grassmann manifolds <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> by the canonical action of the compact torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> of the complexity <span><math><mi>n</mi><mo>−</mo><mn>3</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> serves as a universal space in a sense that for any Hassett compactification <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span> there exists a subspace <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span> in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub><mo>/</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and birational morphism <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>. We describe large class of the set of weights <span><math><mi>A</mi></math></span> for which this birational morphism gives rise to an isomorphism. This provides topological model for the Hassett category in which Deligne-Mumford compactification <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span> is the initial object. Manin showed that compactification <span><math><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> is a smooth toric variety over permutohedron. We provide explicit geometric realization of the manifold <span><math><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> as a toric compactification of an orbit for algebraic torus <span><math><msup><mrow><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msup></math></span> - action on <span><math><msup><mrow><mo>(</mo><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mi>N</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and describe the epimorphism <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> in terms of Fulton - MacPherson, De Concini-Procesi and Li wonderful compactification.<span><span><sup>1</sup></span></span></div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"215 ","pages":"Article 105533"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moduli spaces of weighted pointed stable curves and toric topology of Grassmann manifolds\",\"authors\":\"Victor M. Buchstaber , Svjetlana Terzić\",\"doi\":\"10.1016/j.geomphys.2025.105533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we establish fundamental relations between the famous problem of compactifications of the moduli space <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span> of ordered <em>n</em> distinct points on <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> and toric topology of the complex Grassmann manifolds <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span>. The best known is the Deligne-Mumford compactification <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span>. The Losev-Manin compactification <span><math><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> is also closely related to important questions in mathematical physics and toric geometry. These compactifications belong to the family of Hassett compactifications <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span> of moduli spaces of weighted pointed stable curves. In this paper we show that the orbit space <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub><mo>/</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> of complex Grassmann manifolds <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> by the canonical action of the compact torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> of the complexity <span><math><mi>n</mi><mo>−</mo><mn>3</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> serves as a universal space in a sense that for any Hassett compactification <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span> there exists a subspace <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span> in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub><mo>/</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and birational morphism <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>. We describe large class of the set of weights <span><math><mi>A</mi></math></span> for which this birational morphism gives rise to an isomorphism. This provides topological model for the Hassett category in which Deligne-Mumford compactification <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span> is the initial object. Manin showed that compactification <span><math><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> is a smooth toric variety over permutohedron. We provide explicit geometric realization of the manifold <span><math><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> as a toric compactification of an orbit for algebraic torus <span><math><msup><mrow><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msup></math></span> - action on <span><math><msup><mrow><mo>(</mo><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mi>N</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and describe the epimorphism <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> in terms of Fulton - MacPherson, De Concini-Procesi and Li wonderful compactification.<span><span><sup>1</sup></span></span></div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"215 \",\"pages\":\"Article 105533\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025001172\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001172","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文建立了著名的模空间M0,n (CP1上有n个不同点)的紧化问题与复数Grassmann流形Gn,2的环拓扑之间的基本关系。最著名的是delign - mumford紧化M, 0,n。Losev-Manin紧化L¯0,n,2也与数学物理和环面几何中的重要问题密切相关。这些紧化属于加权点稳定曲线模空间的Hassett紧化M, 0,n,A族。本文利用复杂度为n−3,n≥3的紧环Tn的正则作用,证明了复Grassmann流形Gn,2的轨道空间Gn,2/Tn是一个泛空间,在某种意义上,对于任意Hassett紧化M, 0,n, a,在Gn,2/Tn和双态射M, 0,n, a→Fω中存在子空间Fω。我们描述了一个大的类的权值集合A,对于这个类,双分态射产生一个同构。这提供了哈塞特类别的拓扑模型,其中delign - mumford紧化M - 0,n是初始对象。Manin证明了紧化L¯0,n,2是复面体上的光滑环变。我们提供了流形L¯0,n,2作为代数环面(C)n−3 -作用于(CP1) n, n =(n−22)的轨道的环紧化的显式几何实现,并描述了M´0,n→L¯0,n,2在Fulton - MacPherson, De concinii - procesi和Li - wonderful紧化方面的外射
Moduli spaces of weighted pointed stable curves and toric topology of Grassmann manifolds
In this paper we establish fundamental relations between the famous problem of compactifications of the moduli space of ordered n distinct points on and toric topology of the complex Grassmann manifolds . The best known is the Deligne-Mumford compactification . The Losev-Manin compactification is also closely related to important questions in mathematical physics and toric geometry. These compactifications belong to the family of Hassett compactifications of moduli spaces of weighted pointed stable curves. In this paper we show that the orbit space of complex Grassmann manifolds by the canonical action of the compact torus of the complexity , serves as a universal space in a sense that for any Hassett compactification there exists a subspace in and birational morphism . We describe large class of the set of weights for which this birational morphism gives rise to an isomorphism. This provides topological model for the Hassett category in which Deligne-Mumford compactification is the initial object. Manin showed that compactification is a smooth toric variety over permutohedron. We provide explicit geometric realization of the manifold as a toric compactification of an orbit for algebraic torus - action on , and describe the epimorphism in terms of Fulton - MacPherson, De Concini-Procesi and Li wonderful compactification.1
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity