基于mpc的混合可再生能源系统优化MATLAB-TRNSYS仿真框架

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
Hamza Benzzine , Hicham Labrim , Ibtissam el Aouni , Yasmine Achour , Abderrahim bajit , Aouatif Saad , Hamza Ettahri , Mohamed Balli , Driss Zejli , Rachid El Bouayadi
{"title":"基于mpc的混合可再生能源系统优化MATLAB-TRNSYS仿真框架","authors":"Hamza Benzzine ,&nbsp;Hicham Labrim ,&nbsp;Ibtissam el Aouni ,&nbsp;Yasmine Achour ,&nbsp;Abderrahim bajit ,&nbsp;Aouatif Saad ,&nbsp;Hamza Ettahri ,&nbsp;Mohamed Balli ,&nbsp;Driss Zejli ,&nbsp;Rachid El Bouayadi","doi":"10.1016/j.sciaf.2025.e02751","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid renewable energy systems (HRES) combining wind turbines, photovoltaic arrays and hydrogen storage can supply dispatchable low‑carbon power while buffering resource variability. This study presents a nonlinear Model Predictive Controller (MPC) implemented in a MATLAB–TRNSYS co‑simulation to coordinate generation, electrolysis, compressed‑gas storage and PEM fuel‑cell reconversion over a 6 h rolling horizon. The controller maximises renewable utilisation and maintains the hydrogen state‑of‑charge (SOC) within safe limits, enabling the stored H₂ to serve later as an energy vector or chemical feedstock. Relative to a deterministic single‑step strategy, the predictive MPC reduces hydrogen consumption by 34.6 %, halves the SOC variance and increases the H₂/O₂ co‑production rate by 37 %, yielding a higher overall conversion efficiency. Under a variable 1.2 MW demand profile the scheme meets the load with a renewable penetration of 54 %. These results demonstrate that anticipatory, constraint‑aware control provides a robust pathway for reliable and scalable hydrogen‑centred HRES.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"28 ","pages":"Article e02751"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MATLAB-TRNSYS simulation framework for MPC-based optimization of hybrid renewable energy systems\",\"authors\":\"Hamza Benzzine ,&nbsp;Hicham Labrim ,&nbsp;Ibtissam el Aouni ,&nbsp;Yasmine Achour ,&nbsp;Abderrahim bajit ,&nbsp;Aouatif Saad ,&nbsp;Hamza Ettahri ,&nbsp;Mohamed Balli ,&nbsp;Driss Zejli ,&nbsp;Rachid El Bouayadi\",\"doi\":\"10.1016/j.sciaf.2025.e02751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hybrid renewable energy systems (HRES) combining wind turbines, photovoltaic arrays and hydrogen storage can supply dispatchable low‑carbon power while buffering resource variability. This study presents a nonlinear Model Predictive Controller (MPC) implemented in a MATLAB–TRNSYS co‑simulation to coordinate generation, electrolysis, compressed‑gas storage and PEM fuel‑cell reconversion over a 6 h rolling horizon. The controller maximises renewable utilisation and maintains the hydrogen state‑of‑charge (SOC) within safe limits, enabling the stored H₂ to serve later as an energy vector or chemical feedstock. Relative to a deterministic single‑step strategy, the predictive MPC reduces hydrogen consumption by 34.6 %, halves the SOC variance and increases the H₂/O₂ co‑production rate by 37 %, yielding a higher overall conversion efficiency. Under a variable 1.2 MW demand profile the scheme meets the load with a renewable penetration of 54 %. These results demonstrate that anticipatory, constraint‑aware control provides a robust pathway for reliable and scalable hydrogen‑centred HRES.</div></div>\",\"PeriodicalId\":21690,\"journal\":{\"name\":\"Scientific African\",\"volume\":\"28 \",\"pages\":\"Article e02751\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific African\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468227625002212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625002212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

混合可再生能源系统(HRES)结合了风力涡轮机、光伏阵列和储氢装置,可以在缓冲资源可变性的同时提供可调度的低碳电力。本研究提出了一个非线性模型预测控制器(MPC),在MATLAB-TRNSYS协同仿真中实现,以协调6小时滚动水平上的发电,电解,压缩气体储存和PEM燃料电池再转换。该控制器最大限度地提高了可再生能源的利用率,并将氢的荷电状态(SOC)保持在安全范围内,使存储的氢能够在以后用作能量载体或化学原料。与确定性单步策略相比,预测性MPC可将氢消耗降低34.6%,将SOC方差减半,并将H₂/O₂产率提高37%,从而提高整体转换效率。在可变的1.2兆瓦需求剖面下,该方案以54%的可再生能源渗透率满足负荷。这些结果表明,预期的、约束感知的控制为可靠的、可扩展的氢中心HRES提供了一条强大的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MATLAB-TRNSYS simulation framework for MPC-based optimization of hybrid renewable energy systems
Hybrid renewable energy systems (HRES) combining wind turbines, photovoltaic arrays and hydrogen storage can supply dispatchable low‑carbon power while buffering resource variability. This study presents a nonlinear Model Predictive Controller (MPC) implemented in a MATLAB–TRNSYS co‑simulation to coordinate generation, electrolysis, compressed‑gas storage and PEM fuel‑cell reconversion over a 6 h rolling horizon. The controller maximises renewable utilisation and maintains the hydrogen state‑of‑charge (SOC) within safe limits, enabling the stored H₂ to serve later as an energy vector or chemical feedstock. Relative to a deterministic single‑step strategy, the predictive MPC reduces hydrogen consumption by 34.6 %, halves the SOC variance and increases the H₂/O₂ co‑production rate by 37 %, yielding a higher overall conversion efficiency. Under a variable 1.2 MW demand profile the scheme meets the load with a renewable penetration of 54 %. These results demonstrate that anticipatory, constraint‑aware control provides a robust pathway for reliable and scalable hydrogen‑centred HRES.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信