Bo Liu, Jingxu Tian, Peixin Wang, Zhanpeng Deng, Xiang Xu, Zheng Zeng, Liqing Li
{"title":"热转化过程中k型生物质灰中碱金属迁移和结渣行为的机理研究","authors":"Bo Liu, Jingxu Tian, Peixin Wang, Zhanpeng Deng, Xiang Xu, Zheng Zeng, Liqing Li","doi":"10.1016/j.energy.2025.136800","DOIUrl":null,"url":null,"abstract":"<div><div>Severe slagging phenomena in biomass ash under elevated temperatures have been associated with alkali metal migration. It is imperative to conduct research on alkali metal migration in biomass ash slagging during thermal conversion. Here, the migration of alkali metals in two K-type biomass ashes (coconut husk ash and corn cob ash) during thermal conversion was investigated. The study concluded that alkali metal migration is a primary cause of biomass ash slagging, with elevated ashing temperatures promoting this migration. At temperatures above 700 °C, silicate eutectic compounds formed in biomass ash, promoting intensified ash slagging. KCl, K<sub>2</sub>SO<sub>4</sub>, and K<sub>2</sub>CO<sub>3</sub> all exhibit a tendency to transform into eutectic silicate compounds in high-temperature environments. The water leaching treatment of biomass raw materials notably inhibited the formation of ash, and the ash yield decreased by 55.58 %. This research explores alkali metal migration in K-type biomass ash during thermal conversion and explores its impact on biomass ash slagging. This mechanistic understanding advances predictive capabilities for biomass combustion systems and informs the development of anti-slagging technologies in thermochemical conversion applications.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"329 ","pages":"Article 136800"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic insights into alkali metal migration and slagging behavior in K-type biomass ash during thermal conversion\",\"authors\":\"Bo Liu, Jingxu Tian, Peixin Wang, Zhanpeng Deng, Xiang Xu, Zheng Zeng, Liqing Li\",\"doi\":\"10.1016/j.energy.2025.136800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Severe slagging phenomena in biomass ash under elevated temperatures have been associated with alkali metal migration. It is imperative to conduct research on alkali metal migration in biomass ash slagging during thermal conversion. Here, the migration of alkali metals in two K-type biomass ashes (coconut husk ash and corn cob ash) during thermal conversion was investigated. The study concluded that alkali metal migration is a primary cause of biomass ash slagging, with elevated ashing temperatures promoting this migration. At temperatures above 700 °C, silicate eutectic compounds formed in biomass ash, promoting intensified ash slagging. KCl, K<sub>2</sub>SO<sub>4</sub>, and K<sub>2</sub>CO<sub>3</sub> all exhibit a tendency to transform into eutectic silicate compounds in high-temperature environments. The water leaching treatment of biomass raw materials notably inhibited the formation of ash, and the ash yield decreased by 55.58 %. This research explores alkali metal migration in K-type biomass ash during thermal conversion and explores its impact on biomass ash slagging. This mechanistic understanding advances predictive capabilities for biomass combustion systems and informs the development of anti-slagging technologies in thermochemical conversion applications.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"329 \",\"pages\":\"Article 136800\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544225024429\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225024429","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Mechanistic insights into alkali metal migration and slagging behavior in K-type biomass ash during thermal conversion
Severe slagging phenomena in biomass ash under elevated temperatures have been associated with alkali metal migration. It is imperative to conduct research on alkali metal migration in biomass ash slagging during thermal conversion. Here, the migration of alkali metals in two K-type biomass ashes (coconut husk ash and corn cob ash) during thermal conversion was investigated. The study concluded that alkali metal migration is a primary cause of biomass ash slagging, with elevated ashing temperatures promoting this migration. At temperatures above 700 °C, silicate eutectic compounds formed in biomass ash, promoting intensified ash slagging. KCl, K2SO4, and K2CO3 all exhibit a tendency to transform into eutectic silicate compounds in high-temperature environments. The water leaching treatment of biomass raw materials notably inhibited the formation of ash, and the ash yield decreased by 55.58 %. This research explores alkali metal migration in K-type biomass ash during thermal conversion and explores its impact on biomass ash slagging. This mechanistic understanding advances predictive capabilities for biomass combustion systems and informs the development of anti-slagging technologies in thermochemical conversion applications.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.