优化世界纪录薄膜ACIGS太阳能电池与创新的“曲棍球棒”形状的GGI轮廓串联太阳能技术

IF 3 Q2 PHYSICS, CONDENSED MATTER
Nour El I Boukortt , Antonio Garcia Loureiro
{"title":"优化世界纪录薄膜ACIGS太阳能电池与创新的“曲棍球棒”形状的GGI轮廓串联太阳能技术","authors":"Nour El I Boukortt ,&nbsp;Antonio Garcia Loureiro","doi":"10.1016/j.micrna.2025.208220","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we perform a comprehensive optimization of key parameters influencing the performance of ACIGS (Ag-doped Cu(In,Ga)Se<sub>2</sub>) solar cells, focusing on the effects of deposition environment and techniques. Parameters such as absorber thickness, dopant concentration, electron affinity, bulk defect density, and interface trap density are analyzed using advanced TCAD simulations. A calibrated device model based on experimental data accounts for all relevant material properties and defect distributions. Our findings reveal that minimizing bulk and interface defects primarily induced by deposition conditions is critical to enhancing stability and performance. Under standard test conditions (AM1.5G, 25 °C), the reference and optimized ACIGS single-junction cells achieve power conversion efficiencies (PCEs) of 23.60 % and 25.80 %, respectively. Furthermore, under varying temperatures (20–90 °C) and illumination intensities (10–120 mW/cm<sup>2</sup>), the optimized cell demonstrates notable improvements: a 15 % enhancement in power temperature coefficient and a 22 % increase in voltage temperature coefficient. For tandem configurations, we pair the optimized ACIGS bottom cell featuring a double gallium grading profile with a perovskite top cell (bandgap ≈ 1.70 eV). This results in PCEs of 31.92 % and 32.39 % for tandem devices using ITO and band-to-band tunneling (B2BT) interconnections, respectively, under AM1.5G illumination. The results are benchmarked against recent studies, providing valuable insights into advanced strategies and the physical behavior of high-efficiency tandem perovskite/ACIGS solar cells.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"206 ","pages":"Article 208220"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing world-record thin-film ACIGS solar cells with innovative 'hockey stick'-shaped GGI profile for tandem solar technology\",\"authors\":\"Nour El I Boukortt ,&nbsp;Antonio Garcia Loureiro\",\"doi\":\"10.1016/j.micrna.2025.208220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we perform a comprehensive optimization of key parameters influencing the performance of ACIGS (Ag-doped Cu(In,Ga)Se<sub>2</sub>) solar cells, focusing on the effects of deposition environment and techniques. Parameters such as absorber thickness, dopant concentration, electron affinity, bulk defect density, and interface trap density are analyzed using advanced TCAD simulations. A calibrated device model based on experimental data accounts for all relevant material properties and defect distributions. Our findings reveal that minimizing bulk and interface defects primarily induced by deposition conditions is critical to enhancing stability and performance. Under standard test conditions (AM1.5G, 25 °C), the reference and optimized ACIGS single-junction cells achieve power conversion efficiencies (PCEs) of 23.60 % and 25.80 %, respectively. Furthermore, under varying temperatures (20–90 °C) and illumination intensities (10–120 mW/cm<sup>2</sup>), the optimized cell demonstrates notable improvements: a 15 % enhancement in power temperature coefficient and a 22 % increase in voltage temperature coefficient. For tandem configurations, we pair the optimized ACIGS bottom cell featuring a double gallium grading profile with a perovskite top cell (bandgap ≈ 1.70 eV). This results in PCEs of 31.92 % and 32.39 % for tandem devices using ITO and band-to-band tunneling (B2BT) interconnections, respectively, under AM1.5G illumination. The results are benchmarked against recent studies, providing valuable insights into advanced strategies and the physical behavior of high-efficiency tandem perovskite/ACIGS solar cells.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"206 \",\"pages\":\"Article 208220\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325001499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们对影响ACIGS (ag -掺杂Cu(In,Ga)Se2)太阳能电池性能的关键参数进行了综合优化,重点研究了沉积环境和工艺的影响。利用先进的TCAD模拟分析了吸收剂厚度、掺杂剂浓度、电子亲和力、体缺陷密度和界面陷阱密度等参数。基于实验数据的校准器件模型考虑了所有相关的材料特性和缺陷分布。我们的研究结果表明,最小化主要由沉积条件引起的体积和界面缺陷对于提高稳定性和性能至关重要。在标准测试条件下(AM1.5G, 25°C),参考和优化的ACIGS单结电池的功率转换效率(pce)分别为23.60%和25.80%。此外,在不同温度(20-90°C)和光照强度(10-120 mW/cm2)下,优化后的电池表现出显著的改进:功率温度系数提高15%,电压温度系数提高22%。对于串联配置,我们将优化的ACIGS底部电池与钙钛矿顶部电池(带隙≈1.70 eV)配对,该电池具有双镓分级剖面。这导致在AM1.5G照明下,使用ITO和带对带隧道(B2BT)互连的串联器件的pce分别为31.92%和32.39%。该结果与最近的研究进行了对比,为高效串联钙钛矿/ACIGS太阳能电池的先进策略和物理行为提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing world-record thin-film ACIGS solar cells with innovative 'hockey stick'-shaped GGI profile for tandem solar technology
In this study, we perform a comprehensive optimization of key parameters influencing the performance of ACIGS (Ag-doped Cu(In,Ga)Se2) solar cells, focusing on the effects of deposition environment and techniques. Parameters such as absorber thickness, dopant concentration, electron affinity, bulk defect density, and interface trap density are analyzed using advanced TCAD simulations. A calibrated device model based on experimental data accounts for all relevant material properties and defect distributions. Our findings reveal that minimizing bulk and interface defects primarily induced by deposition conditions is critical to enhancing stability and performance. Under standard test conditions (AM1.5G, 25 °C), the reference and optimized ACIGS single-junction cells achieve power conversion efficiencies (PCEs) of 23.60 % and 25.80 %, respectively. Furthermore, under varying temperatures (20–90 °C) and illumination intensities (10–120 mW/cm2), the optimized cell demonstrates notable improvements: a 15 % enhancement in power temperature coefficient and a 22 % increase in voltage temperature coefficient. For tandem configurations, we pair the optimized ACIGS bottom cell featuring a double gallium grading profile with a perovskite top cell (bandgap ≈ 1.70 eV). This results in PCEs of 31.92 % and 32.39 % for tandem devices using ITO and band-to-band tunneling (B2BT) interconnections, respectively, under AM1.5G illumination. The results are benchmarked against recent studies, providing valuable insights into advanced strategies and the physical behavior of high-efficiency tandem perovskite/ACIGS solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信