双曲半平面上Laplace-Beltrami算子的谱估计

IF 1.7 2区 数学 Q1 MATHEMATICS
Marc Rouveyrol
{"title":"双曲半平面上Laplace-Beltrami算子的谱估计","authors":"Marc Rouveyrol","doi":"10.1016/j.jfa.2025.111059","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of this note is to investigate the concentration properties of spectral projectors on manifolds. This question has been intensively studied (by Logvinenko–Sereda, Nazarov, Jerison–Lebeau, Kovrizhkin, Egidi–Seelmann–Veselić, Burq–Moyano, among others) in connection with the uncertainty principle. We provide the first high-frequency results in a geometric setting which is neither Euclidean nor a perturbation of Euclidean. Namely, we prove the natural (and optimal) uncertainty principle for the spectral projector on the hyperbolic half-plane.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111059"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral estimate for the Laplace–Beltrami operator on the hyperbolic half-plane\",\"authors\":\"Marc Rouveyrol\",\"doi\":\"10.1016/j.jfa.2025.111059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The purpose of this note is to investigate the concentration properties of spectral projectors on manifolds. This question has been intensively studied (by Logvinenko–Sereda, Nazarov, Jerison–Lebeau, Kovrizhkin, Egidi–Seelmann–Veselić, Burq–Moyano, among others) in connection with the uncertainty principle. We provide the first high-frequency results in a geometric setting which is neither Euclidean nor a perturbation of Euclidean. Namely, we prove the natural (and optimal) uncertainty principle for the spectral projector on the hyperbolic half-plane.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 8\",\"pages\":\"Article 111059\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625002411\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002411","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究流形上的光谱投影仪的集中特性。这个问题已经被(Logvinenko-Sereda, Nazarov, Jerison-Lebeau, Kovrizhkin, egidi - seelmann - veseliki, Burq-Moyano等人)与不确定性原理联系在一起进行了深入研究。我们在一个既不是欧几里得也不是欧几里得扰动的几何环境中提供了第一个高频结果。也就是说,我们证明了双曲半平面上光谱投影仪的自然(和最优)不确定性原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral estimate for the Laplace–Beltrami operator on the hyperbolic half-plane
The purpose of this note is to investigate the concentration properties of spectral projectors on manifolds. This question has been intensively studied (by Logvinenko–Sereda, Nazarov, Jerison–Lebeau, Kovrizhkin, Egidi–Seelmann–Veselić, Burq–Moyano, among others) in connection with the uncertainty principle. We provide the first high-frequency results in a geometric setting which is neither Euclidean nor a perturbation of Euclidean. Namely, we prove the natural (and optimal) uncertainty principle for the spectral projector on the hyperbolic half-plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信