{"title":"将多组学数据与人工智能相结合,解读肿瘤浸润淋巴细胞在肿瘤免疫治疗中的作用","authors":"Ting Xie, Haochen Xue, Aoling Huang, Honglin Yan, Jingping Yuan","doi":"10.1016/j.prp.2025.156035","DOIUrl":null,"url":null,"abstract":"<div><div>Tumor-infiltrating lymphocytes (TILs) are capable of recognizing tumor antigens, impacting tumor prognosis, predicting the efficacy of neoadjuvant therapies, contributing to the development of new cell-based immunotherapies, studying the tumor immune microenvironment, and identifying novel biomarkers. Traditional methods for evaluating TILs primarily rely on histopathological examination using standard hematoxylin and eosin staining or immunohistochemical staining, with manual cell counting under a microscope. These methods are time-consuming and subject to significant observer variability and error. Recently, artificial intelligence (AI) has rapidly advanced in the field of medical imaging, particularly with deep learning algorithms based on convolutional neural networks. AI has shown promise as a powerful tool for the quantitative evaluation of tumor biomarkers. The advent of AI offers new opportunities for the automated and standardized assessment of TILs. This review provides an overview of the advancements in the application of AI for assessing TILs from multiple perspectives. It specifically focuses on AI-driven approaches for identifying TILs in tumor tissue images, automating TILs quantification, recognizing TILs subpopulations, and analyzing the spatial distribution patterns of TILs. The review aims to elucidate the prognostic value of TILs in various cancers, as well as their predictive capacity for responses to immunotherapy and neoadjuvant therapy. Furthermore, the review explores the integration of AI with other emerging technologies, such as single-cell sequencing, multiplex immunofluorescence, spatial transcriptomics, and multimodal approaches, to enhance the comprehensive study of TILs and further elucidate their clinical utility in tumor treatment and prognosis.</div></div>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":"271 ","pages":"Article 156035"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating multi-omics data with artificial intelligence to decipher the role of tumor-infiltrating lymphocytes in tumor immunotherapy\",\"authors\":\"Ting Xie, Haochen Xue, Aoling Huang, Honglin Yan, Jingping Yuan\",\"doi\":\"10.1016/j.prp.2025.156035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tumor-infiltrating lymphocytes (TILs) are capable of recognizing tumor antigens, impacting tumor prognosis, predicting the efficacy of neoadjuvant therapies, contributing to the development of new cell-based immunotherapies, studying the tumor immune microenvironment, and identifying novel biomarkers. Traditional methods for evaluating TILs primarily rely on histopathological examination using standard hematoxylin and eosin staining or immunohistochemical staining, with manual cell counting under a microscope. These methods are time-consuming and subject to significant observer variability and error. Recently, artificial intelligence (AI) has rapidly advanced in the field of medical imaging, particularly with deep learning algorithms based on convolutional neural networks. AI has shown promise as a powerful tool for the quantitative evaluation of tumor biomarkers. The advent of AI offers new opportunities for the automated and standardized assessment of TILs. This review provides an overview of the advancements in the application of AI for assessing TILs from multiple perspectives. It specifically focuses on AI-driven approaches for identifying TILs in tumor tissue images, automating TILs quantification, recognizing TILs subpopulations, and analyzing the spatial distribution patterns of TILs. The review aims to elucidate the prognostic value of TILs in various cancers, as well as their predictive capacity for responses to immunotherapy and neoadjuvant therapy. Furthermore, the review explores the integration of AI with other emerging technologies, such as single-cell sequencing, multiplex immunofluorescence, spatial transcriptomics, and multimodal approaches, to enhance the comprehensive study of TILs and further elucidate their clinical utility in tumor treatment and prognosis.</div></div>\",\"PeriodicalId\":19916,\"journal\":{\"name\":\"Pathology, research and practice\",\"volume\":\"271 \",\"pages\":\"Article 156035\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathology, research and practice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0344033825002286\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0344033825002286","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Integrating multi-omics data with artificial intelligence to decipher the role of tumor-infiltrating lymphocytes in tumor immunotherapy
Tumor-infiltrating lymphocytes (TILs) are capable of recognizing tumor antigens, impacting tumor prognosis, predicting the efficacy of neoadjuvant therapies, contributing to the development of new cell-based immunotherapies, studying the tumor immune microenvironment, and identifying novel biomarkers. Traditional methods for evaluating TILs primarily rely on histopathological examination using standard hematoxylin and eosin staining or immunohistochemical staining, with manual cell counting under a microscope. These methods are time-consuming and subject to significant observer variability and error. Recently, artificial intelligence (AI) has rapidly advanced in the field of medical imaging, particularly with deep learning algorithms based on convolutional neural networks. AI has shown promise as a powerful tool for the quantitative evaluation of tumor biomarkers. The advent of AI offers new opportunities for the automated and standardized assessment of TILs. This review provides an overview of the advancements in the application of AI for assessing TILs from multiple perspectives. It specifically focuses on AI-driven approaches for identifying TILs in tumor tissue images, automating TILs quantification, recognizing TILs subpopulations, and analyzing the spatial distribution patterns of TILs. The review aims to elucidate the prognostic value of TILs in various cancers, as well as their predictive capacity for responses to immunotherapy and neoadjuvant therapy. Furthermore, the review explores the integration of AI with other emerging technologies, such as single-cell sequencing, multiplex immunofluorescence, spatial transcriptomics, and multimodal approaches, to enhance the comprehensive study of TILs and further elucidate their clinical utility in tumor treatment and prognosis.
期刊介绍:
Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.