{"title":"GLn标志簇的余切束的Frobenius分裂和上同消","authors":"Rudolf Tange","doi":"10.1016/j.jalgebra.2025.05.003","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>k</em> be an algebraically closed field of characteristic <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span>, let <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the general linear group over <em>k</em>, let <em>P</em> be a parabolic subgroup of <em>G</em>, and let <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> be the Lie algebra of its unipotent radical. We show that the Kumar-Lauritzen-Thomsen splitting of the cotangent bundle <span><math><mi>G</mi><msup><mrow><mo>×</mo></mrow><mrow><mi>P</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> of <span><math><mi>G</mi><mo>/</mo><mi>P</mi></math></span> has top degree <span><math><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>dim</mi><mo></mo><mo>(</mo><mi>G</mi><mo>/</mo><mi>P</mi><mo>)</mo></math></span>. The component of that degree is therefore given by the <span><math><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-th power of a function <em>f</em>. We give a formula for <em>f</em> and deduce that it vanishes on the exceptional locus of the resolution <span><math><mi>G</mi><msup><mrow><mo>×</mo></mrow><mrow><mi>P</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>→</mo><mover><mrow><mi>O</mi></mrow><mo>‾</mo></mover></math></span> where <span><math><mover><mrow><mi>O</mi></mrow><mo>‾</mo></mover></math></span> is the closure of the Richardson orbit of <em>P</em>. As a consequence we obtain that the higher cohomology groups of a line bundle on <span><math><mi>G</mi><msup><mrow><mo>×</mo></mrow><mrow><mi>P</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> associated to a dominant weight are zero. The splitting of <span><math><mi>G</mi><msup><mrow><mo>×</mo></mrow><mrow><mi>P</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> given by <span><math><msup><mrow><mi>f</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> can be seen as a generalisation of the Mehta-Van der Kallen splitting of <span><math><mi>G</mi><msup><mrow><mo>×</mo></mrow><mrow><mi>B</mi></mrow></msup><mi>u</mi></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"679 ","pages":"Pages 56-64"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Frobenius splitting and cohomology vanishing for the cotangent bundles of the flag varieties of GLn\",\"authors\":\"Rudolf Tange\",\"doi\":\"10.1016/j.jalgebra.2025.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>k</em> be an algebraically closed field of characteristic <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span>, let <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the general linear group over <em>k</em>, let <em>P</em> be a parabolic subgroup of <em>G</em>, and let <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> be the Lie algebra of its unipotent radical. We show that the Kumar-Lauritzen-Thomsen splitting of the cotangent bundle <span><math><mi>G</mi><msup><mrow><mo>×</mo></mrow><mrow><mi>P</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> of <span><math><mi>G</mi><mo>/</mo><mi>P</mi></math></span> has top degree <span><math><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>dim</mi><mo></mo><mo>(</mo><mi>G</mi><mo>/</mo><mi>P</mi><mo>)</mo></math></span>. The component of that degree is therefore given by the <span><math><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-th power of a function <em>f</em>. We give a formula for <em>f</em> and deduce that it vanishes on the exceptional locus of the resolution <span><math><mi>G</mi><msup><mrow><mo>×</mo></mrow><mrow><mi>P</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>→</mo><mover><mrow><mi>O</mi></mrow><mo>‾</mo></mover></math></span> where <span><math><mover><mrow><mi>O</mi></mrow><mo>‾</mo></mover></math></span> is the closure of the Richardson orbit of <em>P</em>. As a consequence we obtain that the higher cohomology groups of a line bundle on <span><math><mi>G</mi><msup><mrow><mo>×</mo></mrow><mrow><mi>P</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> associated to a dominant weight are zero. The splitting of <span><math><mi>G</mi><msup><mrow><mo>×</mo></mrow><mrow><mi>P</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> given by <span><math><msup><mrow><mi>f</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> can be seen as a generalisation of the Mehta-Van der Kallen splitting of <span><math><mi>G</mi><msup><mrow><mo>×</mo></mrow><mrow><mi>B</mi></mrow></msup><mi>u</mi></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"679 \",\"pages\":\"Pages 56-64\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325002881\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002881","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设k为特征为p>;0的代数闭域,设G=GLn为k上的一般线性群,设P为G的抛物子群,设uP为其单幂根的李代数。我们证明了G/P的余切束G×PuP的Kumar-Lauritzen-Thomsen分裂具有(P−1)dim (G/P)的顶度。因此,该度的分量由函数f的(p−1)次幂给出。我们给出f的一个公式,并推断它在G×PuP→O的解的例外轨迹上消失,其中O是p的理查德森轨道的闭包。因此,我们得到G×PuP上与主导权相关的线束的高上同调群为零。由fp−1给出的G×PuP分裂可以看作是G×Bu的Mehta-Van der Kallen分裂的推广。
A Frobenius splitting and cohomology vanishing for the cotangent bundles of the flag varieties of GLn
Let k be an algebraically closed field of characteristic , let be the general linear group over k, let P be a parabolic subgroup of G, and let be the Lie algebra of its unipotent radical. We show that the Kumar-Lauritzen-Thomsen splitting of the cotangent bundle of has top degree . The component of that degree is therefore given by the -th power of a function f. We give a formula for f and deduce that it vanishes on the exceptional locus of the resolution where is the closure of the Richardson orbit of P. As a consequence we obtain that the higher cohomology groups of a line bundle on associated to a dominant weight are zero. The splitting of given by can be seen as a generalisation of the Mehta-Van der Kallen splitting of .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.