利用光开关可切割固体偶氮苯材料触发单层WSe2的可逆光变换

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuhao Mi, Zhao-Yang Zhang, Zhengbo Zhong, Pengyu Guo, Zihe Xu, Tao Li, Tianhui Ren and Zhipeng Li*, 
{"title":"利用光开关可切割固体偶氮苯材料触发单层WSe2的可逆光变换","authors":"Yuhao Mi,&nbsp;Zhao-Yang Zhang,&nbsp;Zhengbo Zhong,&nbsp;Pengyu Guo,&nbsp;Zihe Xu,&nbsp;Tao Li,&nbsp;Tianhui Ren and Zhipeng Li*,&nbsp;","doi":"10.1021/acsnano.5c0689510.1021/acsnano.5c06895","DOIUrl":null,"url":null,"abstract":"<p >Stimuli engineering physical properties of transition metal dichalcogenides (TMDCs) have attracted intense interest due to the intriguing potential in future optoelectronics, valleytronics, and quantum information science. Azobenzene molecules provide an ideal platform to manipulate the optical properties of monolayer TMDCs. Here, we employed reversibly photoswitchable and mechanically cleavable solid azobenzene derivative polycrystal to fabricate van der Waals heterostructure and elucidated the interface interaction between the azobenzene molecule and monolayer WSe<sub>2</sub> via visible laser-driven isomerization. The stronger coupling effect and dipole reorientation induced by the solid–liquid phase transition and the <i>trans</i>-to-<i>cis</i> conversion led to significant variation in electron doping to monolayer WSe<sub>2</sub>. It is evidenced by the distinct photoluminescence (PL) quenching at room temperature and the pronounced shift from neutral exciton to negative trion through temperature- and gate-dependent PL and the variation of surface potentials of monolayer WSe<sub>2</sub> and the heterostructure. Our work thus provides a feasible approach to selectively and reversibly engineer 2D materials, which could lay a versatile path to the development of information processing, functional photoresponsive devices, and molecular probes.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 20","pages":"19497–19508 19497–19508"},"PeriodicalIF":16.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triggering Reversible Optical Transformation of Monolayer WSe2 via Photoswitchable and Cleavable Solid Azobenzene Material\",\"authors\":\"Yuhao Mi,&nbsp;Zhao-Yang Zhang,&nbsp;Zhengbo Zhong,&nbsp;Pengyu Guo,&nbsp;Zihe Xu,&nbsp;Tao Li,&nbsp;Tianhui Ren and Zhipeng Li*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c0689510.1021/acsnano.5c06895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Stimuli engineering physical properties of transition metal dichalcogenides (TMDCs) have attracted intense interest due to the intriguing potential in future optoelectronics, valleytronics, and quantum information science. Azobenzene molecules provide an ideal platform to manipulate the optical properties of monolayer TMDCs. Here, we employed reversibly photoswitchable and mechanically cleavable solid azobenzene derivative polycrystal to fabricate van der Waals heterostructure and elucidated the interface interaction between the azobenzene molecule and monolayer WSe<sub>2</sub> via visible laser-driven isomerization. The stronger coupling effect and dipole reorientation induced by the solid–liquid phase transition and the <i>trans</i>-to-<i>cis</i> conversion led to significant variation in electron doping to monolayer WSe<sub>2</sub>. It is evidenced by the distinct photoluminescence (PL) quenching at room temperature and the pronounced shift from neutral exciton to negative trion through temperature- and gate-dependent PL and the variation of surface potentials of monolayer WSe<sub>2</sub> and the heterostructure. Our work thus provides a feasible approach to selectively and reversibly engineer 2D materials, which could lay a versatile path to the development of information processing, functional photoresponsive devices, and molecular probes.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 20\",\"pages\":\"19497–19508 19497–19508\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c06895\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c06895","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属二硫族化合物(TMDCs)的刺激工程物理性质在光电子学、谷电子学和量子信息科学中具有巨大的潜力,引起了人们的广泛关注。偶氮苯分子为操纵单层TMDCs的光学性质提供了理想的平台。本文采用可逆光开关和机械可切割的固体偶氮苯衍生物多晶制备了范德华异质结构,并通过可见激光驱动异构化研究了偶氮苯分子与单层WSe2之间的界面相互作用。固液相变和反式-顺式转化引起的偶极子重取向和更强的耦合效应导致单层WSe2的电子掺杂发生显著变化。在室温下明显的光致发光(PL)猝灭,通过温度和栅极依赖的PL从中性激子到负离子的明显转变以及单层WSe2和异质结构的表面电位的变化证明了这一点。因此,我们的工作为选择性和可逆地设计二维材料提供了一种可行的方法,这可能为信息处理、功能光响应器件和分子探针的发展奠定了一条通用的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Triggering Reversible Optical Transformation of Monolayer WSe2 via Photoswitchable and Cleavable Solid Azobenzene Material

Triggering Reversible Optical Transformation of Monolayer WSe2 via Photoswitchable and Cleavable Solid Azobenzene Material

Stimuli engineering physical properties of transition metal dichalcogenides (TMDCs) have attracted intense interest due to the intriguing potential in future optoelectronics, valleytronics, and quantum information science. Azobenzene molecules provide an ideal platform to manipulate the optical properties of monolayer TMDCs. Here, we employed reversibly photoswitchable and mechanically cleavable solid azobenzene derivative polycrystal to fabricate van der Waals heterostructure and elucidated the interface interaction between the azobenzene molecule and monolayer WSe2 via visible laser-driven isomerization. The stronger coupling effect and dipole reorientation induced by the solid–liquid phase transition and the trans-to-cis conversion led to significant variation in electron doping to monolayer WSe2. It is evidenced by the distinct photoluminescence (PL) quenching at room temperature and the pronounced shift from neutral exciton to negative trion through temperature- and gate-dependent PL and the variation of surface potentials of monolayer WSe2 and the heterostructure. Our work thus provides a feasible approach to selectively and reversibly engineer 2D materials, which could lay a versatile path to the development of information processing, functional photoresponsive devices, and molecular probes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信