具有原子钼和炔基网络的生物启发双点光电阴极用于可扩展的太阳能合成氨

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xue Zhou, Weiwei Wu, Dawei Xu, Chao Liu* and Zhonghai Zhang*, 
{"title":"具有原子钼和炔基网络的生物启发双点光电阴极用于可扩展的太阳能合成氨","authors":"Xue Zhou,&nbsp;Weiwei Wu,&nbsp;Dawei Xu,&nbsp;Chao Liu* and Zhonghai Zhang*,&nbsp;","doi":"10.1021/acsnano.5c0393710.1021/acsnano.5c03937","DOIUrl":null,"url":null,"abstract":"<p >The Haber–Bosch process, while pivotal for global ammonia production, remains energy-intensive and environmentally unsustainable. Here, we report a nitrogenase-inspired photocathode (Mo<sub>1</sub>/HsGDY@Cu<sub>2</sub>O) that synergistically integrates light-harvesting Cu<sub>2</sub>O nanowires, hydrogen-radical-generating alkynyl-rich graphdiyne (HsGDY), and atomically dispersed molybdenum sites for solar-driven nitrogen fixation. Mimicking the Fe/MoFe-cofactor collaboration in nitrogenase, the photocathode enables efficient N<sub>2</sub> adsorption at Mo<sub>1</sub> sites and hydrogen radical transfer from adjacent alkynyl groups, significantly lowering the energy barrier for N<sub>2</sub> hydrogenation. Under 10-sun illumination, the system achieves a record ammonia yield of 78.9 μg cm<sup>–2</sup> h<sup>–1</sup> with a Faradaic efficiency of 38.9% while maintaining 86% activity over 240 h. The ammonia solution directly enhances <i>Epipremnum aureum</i> root growth by 2.3-fold, demonstrating immediate agricultural utility. Combined with bias-free operation and scalable solar concentration, this work provides a practical blueprint for decarbonizing fertilizer production. Operando spectroscopy and DFT calculations further reveal that the dual-site synergy─Mo<sub>1</sub> for N<sub>2</sub> activation and alkynyl groups for H<sup>•</sup> supply─drives the catalytic mechanism, offering a universal strategy for enzyme-inspired energy conversion systems.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 20","pages":"19417–19428 19417–19428"},"PeriodicalIF":16.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired Dual-Site Photocathode with Atomic Molybdenum and Alkynyl Networks for Scalable Solar Ammonia Synthesis\",\"authors\":\"Xue Zhou,&nbsp;Weiwei Wu,&nbsp;Dawei Xu,&nbsp;Chao Liu* and Zhonghai Zhang*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c0393710.1021/acsnano.5c03937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The Haber–Bosch process, while pivotal for global ammonia production, remains energy-intensive and environmentally unsustainable. Here, we report a nitrogenase-inspired photocathode (Mo<sub>1</sub>/HsGDY@Cu<sub>2</sub>O) that synergistically integrates light-harvesting Cu<sub>2</sub>O nanowires, hydrogen-radical-generating alkynyl-rich graphdiyne (HsGDY), and atomically dispersed molybdenum sites for solar-driven nitrogen fixation. Mimicking the Fe/MoFe-cofactor collaboration in nitrogenase, the photocathode enables efficient N<sub>2</sub> adsorption at Mo<sub>1</sub> sites and hydrogen radical transfer from adjacent alkynyl groups, significantly lowering the energy barrier for N<sub>2</sub> hydrogenation. Under 10-sun illumination, the system achieves a record ammonia yield of 78.9 μg cm<sup>–2</sup> h<sup>–1</sup> with a Faradaic efficiency of 38.9% while maintaining 86% activity over 240 h. The ammonia solution directly enhances <i>Epipremnum aureum</i> root growth by 2.3-fold, demonstrating immediate agricultural utility. Combined with bias-free operation and scalable solar concentration, this work provides a practical blueprint for decarbonizing fertilizer production. Operando spectroscopy and DFT calculations further reveal that the dual-site synergy─Mo<sub>1</sub> for N<sub>2</sub> activation and alkynyl groups for H<sup>•</sup> supply─drives the catalytic mechanism, offering a universal strategy for enzyme-inspired energy conversion systems.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 20\",\"pages\":\"19417–19428 19417–19428\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c03937\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c03937","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

哈伯-博世工艺虽然对全球氨生产至关重要,但仍然是能源密集型的,对环境来说是不可持续的。在这里,我们报道了一种由氮酶激发的光电阴极(Mo1/HsGDY@Cu2O),它协同集成了光收集Cu2O纳米线、产生氢自由基的富炔基石墨炔(HsGDY)和原子分散的钼位点,用于太阳能驱动的固氮。光电阴极模拟了氮酶中Fe/ mofe -辅因子的协同作用,能够在Mo1位点高效吸附N2,并从相邻的炔基转移氢自由基,显著降低N2加氢的能垒。在10个太阳光照条件下,该系统的氨产量达到了创纪录的78.9 μg cm-2 h - 1,法拉第效率为38.9%,在240 h内保持86%的活性。氨溶液直接使金胚根生长提高了2.3倍,显示出直接的农业效用。结合无偏操作和可扩展的太阳能集中,这项工作为脱碳肥料生产提供了一个实用的蓝图。Operando光谱和DFT计算进一步揭示了双位点协同作用──Mo1活化N2和炔基供应H──驱动了催化机制,为酶激发的能量转换系统提供了一种通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bioinspired Dual-Site Photocathode with Atomic Molybdenum and Alkynyl Networks for Scalable Solar Ammonia Synthesis

Bioinspired Dual-Site Photocathode with Atomic Molybdenum and Alkynyl Networks for Scalable Solar Ammonia Synthesis

The Haber–Bosch process, while pivotal for global ammonia production, remains energy-intensive and environmentally unsustainable. Here, we report a nitrogenase-inspired photocathode (Mo1/HsGDY@Cu2O) that synergistically integrates light-harvesting Cu2O nanowires, hydrogen-radical-generating alkynyl-rich graphdiyne (HsGDY), and atomically dispersed molybdenum sites for solar-driven nitrogen fixation. Mimicking the Fe/MoFe-cofactor collaboration in nitrogenase, the photocathode enables efficient N2 adsorption at Mo1 sites and hydrogen radical transfer from adjacent alkynyl groups, significantly lowering the energy barrier for N2 hydrogenation. Under 10-sun illumination, the system achieves a record ammonia yield of 78.9 μg cm–2 h–1 with a Faradaic efficiency of 38.9% while maintaining 86% activity over 240 h. The ammonia solution directly enhances Epipremnum aureum root growth by 2.3-fold, demonstrating immediate agricultural utility. Combined with bias-free operation and scalable solar concentration, this work provides a practical blueprint for decarbonizing fertilizer production. Operando spectroscopy and DFT calculations further reveal that the dual-site synergy─Mo1 for N2 activation and alkynyl groups for H supply─drives the catalytic mechanism, offering a universal strategy for enzyme-inspired energy conversion systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信