微波合成MoS2@Cs3Bi2Br9纳米复合材料高效光催化降解水生废弃物中的布洛芬

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Saima Jan, Ajit Sharma*, Owais Hassan Wani, Shah Jahan Ul Islam, Shahid Ahmad Shah, Wengang Bi* and Aadil Ahmad Bhat*, 
{"title":"微波合成MoS2@Cs3Bi2Br9纳米复合材料高效光催化降解水生废弃物中的布洛芬","authors":"Saima Jan,&nbsp;Ajit Sharma*,&nbsp;Owais Hassan Wani,&nbsp;Shah Jahan Ul Islam,&nbsp;Shahid Ahmad Shah,&nbsp;Wengang Bi* and Aadil Ahmad Bhat*,&nbsp;","doi":"10.1021/acs.langmuir.5c0088210.1021/acs.langmuir.5c00882","DOIUrl":null,"url":null,"abstract":"<p >The persistent presence of pharmaceutical contaminants such as ibuprofen (IBF) in aquatic ecosystems poses significant environmental and health risks, as conventional wastewater treatments often fail to eliminate these recalcitrant compounds. Herein, a novel MoS<sub>2</sub>@Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> heterojunction photocatalyst was synthesized via sol–gel and microwave methods to address this challenge. Comprehensive characterization (XRD, FTIR, SEM, EDX, and UV–vis) confirmed the structure of composite and optical properties, revealing a reduced bandgap of 3.04 eV (vs pristine Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>) due to a type II heterojunction with staggered band alignment. This configuration enabled efficient charge separation, as photogenerated electrons migrated from the conduction band (CB) of Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> to MoS<sub>2</sub> (−0.3 eV), while holes transferred inversely, suppressing recombination and enhancing the redox activity. Under optimized conditions (20 mg/L IBF, pH 6.0, visible light, 0.1% H<sub>2</sub>O<sub>2</sub>), the 5% MoS<sub>2</sub>@Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> composite achieved 96.77% degradation efficiency within 3 h, outperforming individual catalysts (61% for MoS<sub>2</sub>-sol–gel, 76% for MoS<sub>2</sub>-microwave, and 69% for Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>). The staggered energy bands of the heterojunction facilitate electron transfer from Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> to MoS<sub>2</sub> and hole migration in the reverse direction, suppressing recombination and amplifying hydroxyl radical (•OH) generation. Low-dose H<sub>2</sub>O<sub>2</sub> (0.1%) acted as an electron scavenger to boost •OH production, while excess H<sub>2</sub>O<sub>2</sub> (1%) promoted recombination, reducing the efficiency. The composite exhibited exceptional reusability, retaining &gt;90% activity over five cycles via H<sub>2</sub>O<sub>2</sub>-assisted regeneration. This work underscores the potential of MoS<sub>2</sub>@Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> as a sustainable, high-performance photocatalyst for degrading pharmaceutical pollutants, offering a viable strategy to mitigate emerging contaminants in water systems.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 20","pages":"12690–12703 12690–12703"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Photocatalytic Degradation of Ibuprofen from Aquatic Waste Using a Microwave Synthesized MoS2@Cs3Bi2Br9 Nanocomposite\",\"authors\":\"Saima Jan,&nbsp;Ajit Sharma*,&nbsp;Owais Hassan Wani,&nbsp;Shah Jahan Ul Islam,&nbsp;Shahid Ahmad Shah,&nbsp;Wengang Bi* and Aadil Ahmad Bhat*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.5c0088210.1021/acs.langmuir.5c00882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The persistent presence of pharmaceutical contaminants such as ibuprofen (IBF) in aquatic ecosystems poses significant environmental and health risks, as conventional wastewater treatments often fail to eliminate these recalcitrant compounds. Herein, a novel MoS<sub>2</sub>@Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> heterojunction photocatalyst was synthesized via sol–gel and microwave methods to address this challenge. Comprehensive characterization (XRD, FTIR, SEM, EDX, and UV–vis) confirmed the structure of composite and optical properties, revealing a reduced bandgap of 3.04 eV (vs pristine Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>) due to a type II heterojunction with staggered band alignment. This configuration enabled efficient charge separation, as photogenerated electrons migrated from the conduction band (CB) of Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> to MoS<sub>2</sub> (−0.3 eV), while holes transferred inversely, suppressing recombination and enhancing the redox activity. Under optimized conditions (20 mg/L IBF, pH 6.0, visible light, 0.1% H<sub>2</sub>O<sub>2</sub>), the 5% MoS<sub>2</sub>@Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> composite achieved 96.77% degradation efficiency within 3 h, outperforming individual catalysts (61% for MoS<sub>2</sub>-sol–gel, 76% for MoS<sub>2</sub>-microwave, and 69% for Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>). The staggered energy bands of the heterojunction facilitate electron transfer from Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> to MoS<sub>2</sub> and hole migration in the reverse direction, suppressing recombination and amplifying hydroxyl radical (•OH) generation. Low-dose H<sub>2</sub>O<sub>2</sub> (0.1%) acted as an electron scavenger to boost •OH production, while excess H<sub>2</sub>O<sub>2</sub> (1%) promoted recombination, reducing the efficiency. The composite exhibited exceptional reusability, retaining &gt;90% activity over five cycles via H<sub>2</sub>O<sub>2</sub>-assisted regeneration. This work underscores the potential of MoS<sub>2</sub>@Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> as a sustainable, high-performance photocatalyst for degrading pharmaceutical pollutants, offering a viable strategy to mitigate emerging contaminants in water systems.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 20\",\"pages\":\"12690–12703 12690–12703\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c00882\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c00882","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在水生生态系统中,布洛芬等药物污染物的持续存在构成了重大的环境和健康风险,因为传统的废水处理往往不能消除这些顽固性化合物。本文通过溶胶-凝胶法和微波法合成了一种新型MoS2@Cs3Bi2Br9异质结光催化剂来解决这一挑战。综合表征(XRD, FTIR, SEM, EDX和UV-vis)证实了复合材料的结构和光学性能,表明由于II型异质结交错带排列,带隙减少了3.04 eV(与原始Cs3Bi2Br9相比)。这种结构使得光电子从Cs3Bi2Br9的传导带(CB)迁移到MoS2 (- 0.3 eV),而空穴反过来迁移,抑制了重组并增强了氧化还原活性,从而实现了有效的电荷分离。在优化条件(20 mg/L IBF, pH 6.0,可见光,0.1% H2O2)下,5% MoS2@Cs3Bi2Br9复合材料在3 h内的降解效率为96.77%,优于单个催化剂(mos2 -溶胶-凝胶61%,mos2 -微波76%,Cs3Bi2Br9 69%)。异质结的交错能带促进了电子从Cs3Bi2Br9向MoS2的转移和空穴的反向迁移,从而抑制了复合并放大了羟基自由基(•OH)的产生。低剂量H2O2(0.1%)作为电子清除剂促进了•OH的生成,而过量H2O2(1%)促进了重组,降低了效率。复合材料表现出优异的可重复使用性,通过h2o2辅助再生,在5个循环中保持了90%的活性。这项工作强调了MoS2@Cs3Bi2Br9作为降解药物污染物的可持续、高性能光催化剂的潜力,为减轻水系统中新出现的污染物提供了可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient Photocatalytic Degradation of Ibuprofen from Aquatic Waste Using a Microwave Synthesized MoS2@Cs3Bi2Br9 Nanocomposite

Efficient Photocatalytic Degradation of Ibuprofen from Aquatic Waste Using a Microwave Synthesized MoS2@Cs3Bi2Br9 Nanocomposite

The persistent presence of pharmaceutical contaminants such as ibuprofen (IBF) in aquatic ecosystems poses significant environmental and health risks, as conventional wastewater treatments often fail to eliminate these recalcitrant compounds. Herein, a novel MoS2@Cs3Bi2Br9 heterojunction photocatalyst was synthesized via sol–gel and microwave methods to address this challenge. Comprehensive characterization (XRD, FTIR, SEM, EDX, and UV–vis) confirmed the structure of composite and optical properties, revealing a reduced bandgap of 3.04 eV (vs pristine Cs3Bi2Br9) due to a type II heterojunction with staggered band alignment. This configuration enabled efficient charge separation, as photogenerated electrons migrated from the conduction band (CB) of Cs3Bi2Br9 to MoS2 (−0.3 eV), while holes transferred inversely, suppressing recombination and enhancing the redox activity. Under optimized conditions (20 mg/L IBF, pH 6.0, visible light, 0.1% H2O2), the 5% MoS2@Cs3Bi2Br9 composite achieved 96.77% degradation efficiency within 3 h, outperforming individual catalysts (61% for MoS2-sol–gel, 76% for MoS2-microwave, and 69% for Cs3Bi2Br9). The staggered energy bands of the heterojunction facilitate electron transfer from Cs3Bi2Br9 to MoS2 and hole migration in the reverse direction, suppressing recombination and amplifying hydroxyl radical (•OH) generation. Low-dose H2O2 (0.1%) acted as an electron scavenger to boost •OH production, while excess H2O2 (1%) promoted recombination, reducing the efficiency. The composite exhibited exceptional reusability, retaining >90% activity over five cycles via H2O2-assisted regeneration. This work underscores the potential of MoS2@Cs3Bi2Br9 as a sustainable, high-performance photocatalyst for degrading pharmaceutical pollutants, offering a viable strategy to mitigate emerging contaminants in water systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信