在MoSe2@MWCNT复合材料上水热合成MSe2 (M = Mn, Ni):提高超级电容器电极效率

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Farhad Chaharganeh Kalangestani*, Fatemeh Aghaei, Hossein S. Shahidani and Mohammadreza Nourmohammadian, 
{"title":"在MoSe2@MWCNT复合材料上水热合成MSe2 (M = Mn, Ni):提高超级电容器电极效率","authors":"Farhad Chaharganeh Kalangestani*,&nbsp;Fatemeh Aghaei,&nbsp;Hossein S. Shahidani and Mohammadreza Nourmohammadian,&nbsp;","doi":"10.1021/acsaelm.5c0060910.1021/acsaelm.5c00609","DOIUrl":null,"url":null,"abstract":"<p >Binary composites of transition metal dichalcogenides and carbon nanotubes have poor electrochemical stability, and this is mostly because developed composites usually have random structures that limit ion diffusion and provide less volume for ions to expand during reversible storage. We report the synthesis of MnSe<sub>2</sub> and NiSe<sub>2</sub> on MoSe<sub>2</sub>@MWCNT binary composite using a hydrothermal technique for application as supercapacitor electrodes in energy storage devices. The incorporation of nanostructures resulted in a ternary composite with strong synergy, which has a higher capacity compared to the MoSe<sub>2</sub>@MWCNT binary composite. The specific capacities of 1269 and 815 F g<sup>–1</sup> were obtained, respectively, for the ternary nanocomposite with MnSe<sub>2</sub> and NiSe<sub>2</sub> in the potential of −0.2 to 0.8 V. With a remarkable cycle life extending up to 3000 cycles, the MnSe<sub>2</sub>/MoSe<sub>2</sub>@MWCNT and NiSe<sub>2</sub>/MoSe<sub>2</sub>@MWCNT electrodes exhibit impressive capacity retention of 99% and 97%, respectively. Notably, the MnSe<sub>2</sub>/MoSe<sub>2</sub>@MWCNT electrode demonstrates superior ionic interaction, facilitated by the presentation of multiple electrochemically active sites. Consequently, this results in reduced resistance and accelerated ion transmission. Nevertheless, both composites emerge as highly promising candidates for efficient energy storage applications.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 10","pages":"4649–4661 4649–4661"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal Synthesis of MSe2 (M = Mn, Ni) on the MoSe2@MWCNT Composite: Advancing Supercapacitor Electrode Efficiency\",\"authors\":\"Farhad Chaharganeh Kalangestani*,&nbsp;Fatemeh Aghaei,&nbsp;Hossein S. Shahidani and Mohammadreza Nourmohammadian,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c0060910.1021/acsaelm.5c00609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Binary composites of transition metal dichalcogenides and carbon nanotubes have poor electrochemical stability, and this is mostly because developed composites usually have random structures that limit ion diffusion and provide less volume for ions to expand during reversible storage. We report the synthesis of MnSe<sub>2</sub> and NiSe<sub>2</sub> on MoSe<sub>2</sub>@MWCNT binary composite using a hydrothermal technique for application as supercapacitor electrodes in energy storage devices. The incorporation of nanostructures resulted in a ternary composite with strong synergy, which has a higher capacity compared to the MoSe<sub>2</sub>@MWCNT binary composite. The specific capacities of 1269 and 815 F g<sup>–1</sup> were obtained, respectively, for the ternary nanocomposite with MnSe<sub>2</sub> and NiSe<sub>2</sub> in the potential of −0.2 to 0.8 V. With a remarkable cycle life extending up to 3000 cycles, the MnSe<sub>2</sub>/MoSe<sub>2</sub>@MWCNT and NiSe<sub>2</sub>/MoSe<sub>2</sub>@MWCNT electrodes exhibit impressive capacity retention of 99% and 97%, respectively. Notably, the MnSe<sub>2</sub>/MoSe<sub>2</sub>@MWCNT electrode demonstrates superior ionic interaction, facilitated by the presentation of multiple electrochemically active sites. Consequently, this results in reduced resistance and accelerated ion transmission. Nevertheless, both composites emerge as highly promising candidates for efficient energy storage applications.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 10\",\"pages\":\"4649–4661 4649–4661\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c00609\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00609","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属二硫族化合物和碳纳米管二元复合材料的电化学稳定性较差,这主要是因为开发的复合材料通常具有随机结构,限制了离子的扩散,并且在可逆存储过程中为离子提供的膨胀体积较小。本文报道了利用水热技术在MoSe2@MWCNT二元复合材料上合成MnSe2和NiSe2,并将其应用于储能装置中的超级电容器电极。纳米结构的加入使三元复合材料具有较强的协同作用,与MoSe2@MWCNT二元复合材料相比具有更高的容量。在−0.2 ~ 0.8 V电势下,MnSe2和NiSe2三元复合材料的比容量分别为1269和815 gf - 1。MnSe2/MoSe2@MWCNT和NiSe2/MoSe2@MWCNT电极的循环寿命可达3000次,其容量保持率分别为99%和97%。值得注意的是,MnSe2/MoSe2@MWCNT电极表现出优异的离子相互作用,促进了多个电化学活性位点的出现。因此,这导致电阻降低和离子传输加速。然而,这两种复合材料都是高效储能应用的极有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrothermal Synthesis of MSe2 (M = Mn, Ni) on the MoSe2@MWCNT Composite: Advancing Supercapacitor Electrode Efficiency

Binary composites of transition metal dichalcogenides and carbon nanotubes have poor electrochemical stability, and this is mostly because developed composites usually have random structures that limit ion diffusion and provide less volume for ions to expand during reversible storage. We report the synthesis of MnSe2 and NiSe2 on MoSe2@MWCNT binary composite using a hydrothermal technique for application as supercapacitor electrodes in energy storage devices. The incorporation of nanostructures resulted in a ternary composite with strong synergy, which has a higher capacity compared to the MoSe2@MWCNT binary composite. The specific capacities of 1269 and 815 F g–1 were obtained, respectively, for the ternary nanocomposite with MnSe2 and NiSe2 in the potential of −0.2 to 0.8 V. With a remarkable cycle life extending up to 3000 cycles, the MnSe2/MoSe2@MWCNT and NiSe2/MoSe2@MWCNT electrodes exhibit impressive capacity retention of 99% and 97%, respectively. Notably, the MnSe2/MoSe2@MWCNT electrode demonstrates superior ionic interaction, facilitated by the presentation of multiple electrochemically active sites. Consequently, this results in reduced resistance and accelerated ion transmission. Nevertheless, both composites emerge as highly promising candidates for efficient energy storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信