电场依赖的H+和表面O原子之间的共价相互作用促进了蒙脱土的结构分解

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Shuang Xiao, Jiawen Qu, Yuting Tang, Wuquan Ding and Xinmin Liu*, 
{"title":"电场依赖的H+和表面O原子之间的共价相互作用促进了蒙脱土的结构分解","authors":"Shuang Xiao,&nbsp;Jiawen Qu,&nbsp;Yuting Tang,&nbsp;Wuquan Ding and Xinmin Liu*,&nbsp;","doi":"10.1021/acs.langmuir.5c0067110.1021/acs.langmuir.5c00671","DOIUrl":null,"url":null,"abstract":"<p >The structural stability of clay minerals is an important geochemical process. However, a long-standing challenge is to understand the surface reaction mechanisms for mineral structure stability. Quantum mechanical analysis indicates that a strong surface reaction, electric-field-dependent covalent interactions between H<sup>+</sup> and basal oxygen (O) atoms of montmorillonite (MMT) surface, occurs in hydrothermal experiments. The covalent interactions strongly depend on the orbital hybridization of siloxane atoms at the MMT surface and increase with increasing acid concentration and temperature. The electric-field-dependent covalent interactions between H<sup>+</sup> and surface O atoms weaken the Si–O bonding energy in MMT crystals, consequently contributing to the structural disintegration. A critical adsorption pressure of H<sup>+</sup> at the MMT surface for complete disintegration was estimated to be −241.6 MPa. For example, the transformation rate of MMT is 34.7% at an adsorption pressure of −203.5 MPa, while it reaches up to 97.4% when adsorption pressures are below −241.6 MPa. Our findings will enhance the understanding and awareness of mineral weathering and soil acidification, which depend on the clay mineral structure.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 20","pages":"12607–12618 12607–12618"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric-Field-Dependent Covalent Interactions between H+ and Surface O Atoms Promote the Structural Disintegration of Montmorillonite\",\"authors\":\"Shuang Xiao,&nbsp;Jiawen Qu,&nbsp;Yuting Tang,&nbsp;Wuquan Ding and Xinmin Liu*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.5c0067110.1021/acs.langmuir.5c00671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The structural stability of clay minerals is an important geochemical process. However, a long-standing challenge is to understand the surface reaction mechanisms for mineral structure stability. Quantum mechanical analysis indicates that a strong surface reaction, electric-field-dependent covalent interactions between H<sup>+</sup> and basal oxygen (O) atoms of montmorillonite (MMT) surface, occurs in hydrothermal experiments. The covalent interactions strongly depend on the orbital hybridization of siloxane atoms at the MMT surface and increase with increasing acid concentration and temperature. The electric-field-dependent covalent interactions between H<sup>+</sup> and surface O atoms weaken the Si–O bonding energy in MMT crystals, consequently contributing to the structural disintegration. A critical adsorption pressure of H<sup>+</sup> at the MMT surface for complete disintegration was estimated to be −241.6 MPa. For example, the transformation rate of MMT is 34.7% at an adsorption pressure of −203.5 MPa, while it reaches up to 97.4% when adsorption pressures are below −241.6 MPa. Our findings will enhance the understanding and awareness of mineral weathering and soil acidification, which depend on the clay mineral structure.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 20\",\"pages\":\"12607–12618 12607–12618\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c00671\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c00671","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

粘土矿物的结构稳定性是一个重要的地球化学过程。然而,了解矿物结构稳定性的表面反应机制是一个长期存在的挑战。量子力学分析表明,在水热实验中,蒙脱土(MMT)表面发生了一种强的表面反应,即H+与基氧(O)原子之间的电场依赖共价相互作用。共价相互作用强烈依赖于MMT表面硅氧烷原子的轨道杂化,并随着酸浓度和温度的增加而增加。H+和表面O原子之间的电场依赖共价相互作用削弱了MMT晶体中的Si-O键能,从而导致结构解体。H+在MMT表面完全分解的临界吸附压力估计为- 241.6 MPa。例如,在- 203.5 MPa的吸附压力下,MMT的转化率为34.7%,而在- 241.6 MPa以下的吸附压力下,转化率高达97.4%。我们的发现将增强对矿物风化和土壤酸化的认识和认识,这取决于粘土矿物的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electric-Field-Dependent Covalent Interactions between H+ and Surface O Atoms Promote the Structural Disintegration of Montmorillonite

Electric-Field-Dependent Covalent Interactions between H+ and Surface O Atoms Promote the Structural Disintegration of Montmorillonite

The structural stability of clay minerals is an important geochemical process. However, a long-standing challenge is to understand the surface reaction mechanisms for mineral structure stability. Quantum mechanical analysis indicates that a strong surface reaction, electric-field-dependent covalent interactions between H+ and basal oxygen (O) atoms of montmorillonite (MMT) surface, occurs in hydrothermal experiments. The covalent interactions strongly depend on the orbital hybridization of siloxane atoms at the MMT surface and increase with increasing acid concentration and temperature. The electric-field-dependent covalent interactions between H+ and surface O atoms weaken the Si–O bonding energy in MMT crystals, consequently contributing to the structural disintegration. A critical adsorption pressure of H+ at the MMT surface for complete disintegration was estimated to be −241.6 MPa. For example, the transformation rate of MMT is 34.7% at an adsorption pressure of −203.5 MPa, while it reaches up to 97.4% when adsorption pressures are below −241.6 MPa. Our findings will enhance the understanding and awareness of mineral weathering and soil acidification, which depend on the clay mineral structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信