Linquan Gong, Siddharth Gadkari, Yong Pan* and Anh Phan*,
{"title":"驱动锂基电池中单离子导电聚合物电解质性能的分子机制","authors":"Linquan Gong, Siddharth Gadkari, Yong Pan* and Anh Phan*, ","doi":"10.1021/acs.langmuir.5c0073510.1021/acs.langmuir.5c00735","DOIUrl":null,"url":null,"abstract":"<p >Single-ion conducting polymer electrolytes (SICPEs) hold great potential for the next-generation batteries due to their high safety, fast charging capability, and high energy density. However, their practical application is hindered by the low ionic conductivity (IC). The addition of plasticizers has been shown to effectively enhance IC, although the underlying molecular mechanisms remain unclear. In this study, we employed atomistic molecular dynamics simulations to examine the impact of ethylene carbonate (EC) on lithium-ionic conductivity in a modified polyethylene terephthalate (mPET)-based SICPE. Our simulations reproduced experimental IC values and revealed a similar IC trend with varying EC concentrations, including a notable transition at 50 wt % EC. This enhancement in IC appears to be associated with increased EC diffusion and the preferential coordination of the lithium ions with the oxygen atoms in EC. Analysis of the local oxygen coordination environment around lithium ions further explains the IC transition observed at 50 wt % EC. These findings provide insights into the molecular mechanisms by which EC enhances IC in mPET-based SICPEs, primarily through changes in the local oxygen environment surrounding lithium ions. This study contributes to the design of improved SICPEs with plasticizers, supporting advancements in lithium-ion battery technology.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 20","pages":"12634–12644 12634–12644"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Mechanisms Driving the Performance of Single-Ion Conducting Polymer Electrolytes in Lithium-Based Batteries\",\"authors\":\"Linquan Gong, Siddharth Gadkari, Yong Pan* and Anh Phan*, \",\"doi\":\"10.1021/acs.langmuir.5c0073510.1021/acs.langmuir.5c00735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Single-ion conducting polymer electrolytes (SICPEs) hold great potential for the next-generation batteries due to their high safety, fast charging capability, and high energy density. However, their practical application is hindered by the low ionic conductivity (IC). The addition of plasticizers has been shown to effectively enhance IC, although the underlying molecular mechanisms remain unclear. In this study, we employed atomistic molecular dynamics simulations to examine the impact of ethylene carbonate (EC) on lithium-ionic conductivity in a modified polyethylene terephthalate (mPET)-based SICPE. Our simulations reproduced experimental IC values and revealed a similar IC trend with varying EC concentrations, including a notable transition at 50 wt % EC. This enhancement in IC appears to be associated with increased EC diffusion and the preferential coordination of the lithium ions with the oxygen atoms in EC. Analysis of the local oxygen coordination environment around lithium ions further explains the IC transition observed at 50 wt % EC. These findings provide insights into the molecular mechanisms by which EC enhances IC in mPET-based SICPEs, primarily through changes in the local oxygen environment surrounding lithium ions. This study contributes to the design of improved SICPEs with plasticizers, supporting advancements in lithium-ion battery technology.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 20\",\"pages\":\"12634–12644 12634–12644\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c00735\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c00735","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Molecular Mechanisms Driving the Performance of Single-Ion Conducting Polymer Electrolytes in Lithium-Based Batteries
Single-ion conducting polymer electrolytes (SICPEs) hold great potential for the next-generation batteries due to their high safety, fast charging capability, and high energy density. However, their practical application is hindered by the low ionic conductivity (IC). The addition of plasticizers has been shown to effectively enhance IC, although the underlying molecular mechanisms remain unclear. In this study, we employed atomistic molecular dynamics simulations to examine the impact of ethylene carbonate (EC) on lithium-ionic conductivity in a modified polyethylene terephthalate (mPET)-based SICPE. Our simulations reproduced experimental IC values and revealed a similar IC trend with varying EC concentrations, including a notable transition at 50 wt % EC. This enhancement in IC appears to be associated with increased EC diffusion and the preferential coordination of the lithium ions with the oxygen atoms in EC. Analysis of the local oxygen coordination environment around lithium ions further explains the IC transition observed at 50 wt % EC. These findings provide insights into the molecular mechanisms by which EC enhances IC in mPET-based SICPEs, primarily through changes in the local oxygen environment surrounding lithium ions. This study contributes to the design of improved SICPEs with plasticizers, supporting advancements in lithium-ion battery technology.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).