生物医学纳米工程的生成式人工智能副驾驶

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yifan Wang, Haitao Song, Yue Teng, Guan Huang, Jingzhe Qian, Hongyu Wang, Shiyan Dong, JongHoon Ha, Yifan Ma, Mengyu Chang, Seong Dong Jeong, Weiye Deng, Benjamin R. Schrank, Adam Grippin, Annette Wu, Jared L. Edwards, Yixiang Zhang, Yuanyuan Lin, Wilson Poon, Stefan Wilhelm, Ye Bi, Lesheng Teng, Zikai Wang*, Betty Y. S. Kim* and Wen Jiang*, 
{"title":"生物医学纳米工程的生成式人工智能副驾驶","authors":"Yifan Wang,&nbsp;Haitao Song,&nbsp;Yue Teng,&nbsp;Guan Huang,&nbsp;Jingzhe Qian,&nbsp;Hongyu Wang,&nbsp;Shiyan Dong,&nbsp;JongHoon Ha,&nbsp;Yifan Ma,&nbsp;Mengyu Chang,&nbsp;Seong Dong Jeong,&nbsp;Weiye Deng,&nbsp;Benjamin R. Schrank,&nbsp;Adam Grippin,&nbsp;Annette Wu,&nbsp;Jared L. Edwards,&nbsp;Yixiang Zhang,&nbsp;Yuanyuan Lin,&nbsp;Wilson Poon,&nbsp;Stefan Wilhelm,&nbsp;Ye Bi,&nbsp;Lesheng Teng,&nbsp;Zikai Wang*,&nbsp;Betty Y. S. Kim* and Wen Jiang*,&nbsp;","doi":"10.1021/acsnano.5c0345410.1021/acsnano.5c03454","DOIUrl":null,"url":null,"abstract":"<p >The recent success of large language models (LLMs) in performing natural language processing tasks has increased interest in applying generative artificial intelligence (AI) to scientific research. However, a common problem of LLMs is their tendency to produce inaccurate and sometimes “hallucinated” outputs. Here, we established a generative AI tool, NanoSafari, to automatically extract knowledge from the biomedical nanoscience literature and address scientific queries. We developed the Grouped Iterative Validation based Information Extraction (GIVE) method to extract contextual information on nanoparticle characteristics from &gt;20,000 published articles and established a database that was incorporated into the generative LLM to provide accurate nanomaterial design parameters. Blinded evaluation by biomedical nanoscientists showed that NanoSafari outperformed the baseline model in providing more reliable parameters for nanomaterial design tasks, as further validated by bench experiments. Together, these findings demonstrate the utility of AI-based methods for automated learning from “real-world” published work to provide accurate and reliable scientific references for biomaterial and bioengineering applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 20","pages":"19394–19407 19394–19407"},"PeriodicalIF":16.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generative Artificial Intelligence Copilot for Biomedical Nanoengineering\",\"authors\":\"Yifan Wang,&nbsp;Haitao Song,&nbsp;Yue Teng,&nbsp;Guan Huang,&nbsp;Jingzhe Qian,&nbsp;Hongyu Wang,&nbsp;Shiyan Dong,&nbsp;JongHoon Ha,&nbsp;Yifan Ma,&nbsp;Mengyu Chang,&nbsp;Seong Dong Jeong,&nbsp;Weiye Deng,&nbsp;Benjamin R. Schrank,&nbsp;Adam Grippin,&nbsp;Annette Wu,&nbsp;Jared L. Edwards,&nbsp;Yixiang Zhang,&nbsp;Yuanyuan Lin,&nbsp;Wilson Poon,&nbsp;Stefan Wilhelm,&nbsp;Ye Bi,&nbsp;Lesheng Teng,&nbsp;Zikai Wang*,&nbsp;Betty Y. S. Kim* and Wen Jiang*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c0345410.1021/acsnano.5c03454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The recent success of large language models (LLMs) in performing natural language processing tasks has increased interest in applying generative artificial intelligence (AI) to scientific research. However, a common problem of LLMs is their tendency to produce inaccurate and sometimes “hallucinated” outputs. Here, we established a generative AI tool, NanoSafari, to automatically extract knowledge from the biomedical nanoscience literature and address scientific queries. We developed the Grouped Iterative Validation based Information Extraction (GIVE) method to extract contextual information on nanoparticle characteristics from &gt;20,000 published articles and established a database that was incorporated into the generative LLM to provide accurate nanomaterial design parameters. Blinded evaluation by biomedical nanoscientists showed that NanoSafari outperformed the baseline model in providing more reliable parameters for nanomaterial design tasks, as further validated by bench experiments. Together, these findings demonstrate the utility of AI-based methods for automated learning from “real-world” published work to provide accurate and reliable scientific references for biomaterial and bioengineering applications.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 20\",\"pages\":\"19394–19407 19394–19407\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c03454\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c03454","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近大型语言模型(llm)在执行自然语言处理任务方面的成功增加了将生成式人工智能(AI)应用于科学研究的兴趣。然而,法学硕士的一个常见问题是它们倾向于产生不准确的,有时是“幻觉”的输出。在这里,我们建立了一个生成式人工智能工具NanoSafari,以自动从生物医学纳米科学文献中提取知识并解决科学问题。我们开发了基于分组迭代验证的信息提取(GIVE)方法,从20,000篇已发表的文章中提取纳米颗粒特征的上下文信息,并建立了一个数据库,该数据库被纳入生成法学模型中,以提供准确的纳米材料设计参数。生物医学纳米科学家的盲法评估表明,NanoSafari在为纳米材料设计任务提供更可靠的参数方面优于基线模型,这一点在实验室实验中得到了进一步验证。总之,这些发现证明了基于人工智能的方法在“现实世界”已发表作品中自动学习的实用性,为生物材料和生物工程应用提供了准确可靠的科学参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Generative Artificial Intelligence Copilot for Biomedical Nanoengineering

A Generative Artificial Intelligence Copilot for Biomedical Nanoengineering

The recent success of large language models (LLMs) in performing natural language processing tasks has increased interest in applying generative artificial intelligence (AI) to scientific research. However, a common problem of LLMs is their tendency to produce inaccurate and sometimes “hallucinated” outputs. Here, we established a generative AI tool, NanoSafari, to automatically extract knowledge from the biomedical nanoscience literature and address scientific queries. We developed the Grouped Iterative Validation based Information Extraction (GIVE) method to extract contextual information on nanoparticle characteristics from >20,000 published articles and established a database that was incorporated into the generative LLM to provide accurate nanomaterial design parameters. Blinded evaluation by biomedical nanoscientists showed that NanoSafari outperformed the baseline model in providing more reliable parameters for nanomaterial design tasks, as further validated by bench experiments. Together, these findings demonstrate the utility of AI-based methods for automated learning from “real-world” published work to provide accurate and reliable scientific references for biomaterial and bioengineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信