Wenbin Chen , Shasha Liu , Lechen Han , Jiangying Yu , Jinrong Xu , Min Shi , Xinhua Li , Kai Huang , Ping Li
{"title":"二维M2X3 (M=V, Cr, Mn, Fe, Co, Ni)的电子和磁性研究X=O, S, Se, Te)化合物","authors":"Wenbin Chen , Shasha Liu , Lechen Han , Jiangying Yu , Jinrong Xu , Min Shi , Xinhua Li , Kai Huang , Ping Li","doi":"10.1016/j.physb.2025.417396","DOIUrl":null,"url":null,"abstract":"<div><div>Based on first-principles calculations, the dynamical stability, electronic structures and magnetic properties of two-dimensional (2D) M<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (M=V, Cr, Mn, Fe, Co, Ni; X = O, S, Se, Te) compounds are investigated. According to the results, we identify a series of dynamically, mechanically and thermally stable materials with different magnetic configurations. V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Cr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Cr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> are antiferromagnetic (AFM) insulators, with energy gaps ranging from 0.09 eV to 1.67 eV. Cr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> is a ferromagnetic (FM) insulator with an indirect energy gap of 0.90 eV. Mn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Mn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Mn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and Co<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> are FM metals. Particularly, we predict several rare AFM metals, including Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Co<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and Ni<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>. The exchange coupling parameters are obtained by fitting the Ising model to first-principles energies to help understand the magnetic mechanism. Monte Carlo simulations indicate that the magnetic phase-transition temperatures of these materials span a wide range, from approximately 150 K to 1000 K. The electronic structures and the magnetic ground states of these 2D compounds can be effectively tuned by biaxial strain and charge doping. This work enriches the family of 2D magnetic materials, especially the family of rare FM insulators and AFM metals.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"714 ","pages":"Article 417396"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the electronic and magnetic properties of two-dimensional M2X3 (M=V, Cr, Mn, Fe, Co, Ni; X=O, S, Se, Te) compounds\",\"authors\":\"Wenbin Chen , Shasha Liu , Lechen Han , Jiangying Yu , Jinrong Xu , Min Shi , Xinhua Li , Kai Huang , Ping Li\",\"doi\":\"10.1016/j.physb.2025.417396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on first-principles calculations, the dynamical stability, electronic structures and magnetic properties of two-dimensional (2D) M<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (M=V, Cr, Mn, Fe, Co, Ni; X = O, S, Se, Te) compounds are investigated. According to the results, we identify a series of dynamically, mechanically and thermally stable materials with different magnetic configurations. V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Cr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Cr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> are antiferromagnetic (AFM) insulators, with energy gaps ranging from 0.09 eV to 1.67 eV. Cr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> is a ferromagnetic (FM) insulator with an indirect energy gap of 0.90 eV. Mn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Mn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Mn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and Co<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> are FM metals. Particularly, we predict several rare AFM metals, including Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Co<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and Ni<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>. The exchange coupling parameters are obtained by fitting the Ising model to first-principles energies to help understand the magnetic mechanism. Monte Carlo simulations indicate that the magnetic phase-transition temperatures of these materials span a wide range, from approximately 150 K to 1000 K. The electronic structures and the magnetic ground states of these 2D compounds can be effectively tuned by biaxial strain and charge doping. This work enriches the family of 2D magnetic materials, especially the family of rare FM insulators and AFM metals.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"714 \",\"pages\":\"Article 417396\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625005137\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625005137","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Exploring the electronic and magnetic properties of two-dimensional M2X3 (M=V, Cr, Mn, Fe, Co, Ni; X=O, S, Se, Te) compounds
Based on first-principles calculations, the dynamical stability, electronic structures and magnetic properties of two-dimensional (2D) MX (M=V, Cr, Mn, Fe, Co, Ni; X = O, S, Se, Te) compounds are investigated. According to the results, we identify a series of dynamically, mechanically and thermally stable materials with different magnetic configurations. VO, VS, VSe, VTe, CrSe, CrTe, FeO, FeS and FeSe are antiferromagnetic (AFM) insulators, with energy gaps ranging from 0.09 eV to 1.67 eV. CrS is a ferromagnetic (FM) insulator with an indirect energy gap of 0.90 eV. MnS, MnSe, MnTe and CoSe are FM metals. Particularly, we predict several rare AFM metals, including FeTe, CoTe and NiSe. The exchange coupling parameters are obtained by fitting the Ising model to first-principles energies to help understand the magnetic mechanism. Monte Carlo simulations indicate that the magnetic phase-transition temperatures of these materials span a wide range, from approximately 150 K to 1000 K. The electronic structures and the magnetic ground states of these 2D compounds can be effectively tuned by biaxial strain and charge doping. This work enriches the family of 2D magnetic materials, especially the family of rare FM insulators and AFM metals.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces