二维M2X3 (M=V, Cr, Mn, Fe, Co, Ni)的电子和磁性研究X=O, S, Se, Te)化合物

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Wenbin Chen , Shasha Liu , Lechen Han , Jiangying Yu , Jinrong Xu , Min Shi , Xinhua Li , Kai Huang , Ping Li
{"title":"二维M2X3 (M=V, Cr, Mn, Fe, Co, Ni)的电子和磁性研究X=O, S, Se, Te)化合物","authors":"Wenbin Chen ,&nbsp;Shasha Liu ,&nbsp;Lechen Han ,&nbsp;Jiangying Yu ,&nbsp;Jinrong Xu ,&nbsp;Min Shi ,&nbsp;Xinhua Li ,&nbsp;Kai Huang ,&nbsp;Ping Li","doi":"10.1016/j.physb.2025.417396","DOIUrl":null,"url":null,"abstract":"<div><div>Based on first-principles calculations, the dynamical stability, electronic structures and magnetic properties of two-dimensional (2D) M<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (M=V, Cr, Mn, Fe, Co, Ni; X = O, S, Se, Te) compounds are investigated. According to the results, we identify a series of dynamically, mechanically and thermally stable materials with different magnetic configurations. V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Cr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Cr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> are antiferromagnetic (AFM) insulators, with energy gaps ranging from 0.09 eV to 1.67 eV. Cr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> is a ferromagnetic (FM) insulator with an indirect energy gap of 0.90 eV. Mn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Mn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Mn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and Co<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> are FM metals. Particularly, we predict several rare AFM metals, including Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Co<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and Ni<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>. The exchange coupling parameters are obtained by fitting the Ising model to first-principles energies to help understand the magnetic mechanism. Monte Carlo simulations indicate that the magnetic phase-transition temperatures of these materials span a wide range, from approximately 150 K to 1000 K. The electronic structures and the magnetic ground states of these 2D compounds can be effectively tuned by biaxial strain and charge doping. This work enriches the family of 2D magnetic materials, especially the family of rare FM insulators and AFM metals.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"714 ","pages":"Article 417396"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the electronic and magnetic properties of two-dimensional M2X3 (M=V, Cr, Mn, Fe, Co, Ni; X=O, S, Se, Te) compounds\",\"authors\":\"Wenbin Chen ,&nbsp;Shasha Liu ,&nbsp;Lechen Han ,&nbsp;Jiangying Yu ,&nbsp;Jinrong Xu ,&nbsp;Min Shi ,&nbsp;Xinhua Li ,&nbsp;Kai Huang ,&nbsp;Ping Li\",\"doi\":\"10.1016/j.physb.2025.417396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on first-principles calculations, the dynamical stability, electronic structures and magnetic properties of two-dimensional (2D) M<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (M=V, Cr, Mn, Fe, Co, Ni; X = O, S, Se, Te) compounds are investigated. According to the results, we identify a series of dynamically, mechanically and thermally stable materials with different magnetic configurations. V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Cr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Cr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> are antiferromagnetic (AFM) insulators, with energy gaps ranging from 0.09 eV to 1.67 eV. Cr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> is a ferromagnetic (FM) insulator with an indirect energy gap of 0.90 eV. Mn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Mn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Mn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and Co<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> are FM metals. Particularly, we predict several rare AFM metals, including Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Co<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and Ni<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>. The exchange coupling parameters are obtained by fitting the Ising model to first-principles energies to help understand the magnetic mechanism. Monte Carlo simulations indicate that the magnetic phase-transition temperatures of these materials span a wide range, from approximately 150 K to 1000 K. The electronic structures and the magnetic ground states of these 2D compounds can be effectively tuned by biaxial strain and charge doping. This work enriches the family of 2D magnetic materials, especially the family of rare FM insulators and AFM metals.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"714 \",\"pages\":\"Article 417396\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625005137\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625005137","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

基于第一性原理计算,二维(2D) M2X3 (M=V, Cr, Mn, Fe, Co, Ni;研究了X = O, S, Se, Te)化合物。根据结果,我们确定了一系列具有不同磁构型的动态、机械和热稳定材料。V2O3、V2S3、V2Se3、V2Te3、Cr2Se3、Cr2Te3、Fe2O3、Fe2S3和Fe2Se3为反铁磁(AFM)绝缘体,能隙范围为0.09 eV ~ 1.67 eV。Cr2S3是一种间接能隙为0.90 eV的铁磁绝缘体。Mn2S3, Mn2Se3, Mn2Te3和Co2Se3是FM金属。特别地,我们预测了几种稀有的AFM金属,包括Fe2Te3, Co2Te3和Ni2Se3。通过将Ising模型拟合到第一性原理能量,得到了交换耦合参数,以帮助理解磁机制。蒙特卡罗模拟表明,这些材料的磁相变温度范围很广,大约在150 K到1000 K之间。通过双轴应变和电荷掺杂,可以有效地调整二维化合物的电子结构和磁性基态。这项工作丰富了二维磁性材料家族,特别是稀有的FM绝缘体和AFM金属家族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the electronic and magnetic properties of two-dimensional M2X3 (M=V, Cr, Mn, Fe, Co, Ni; X=O, S, Se, Te) compounds
Based on first-principles calculations, the dynamical stability, electronic structures and magnetic properties of two-dimensional (2D) M2X3 (M=V, Cr, Mn, Fe, Co, Ni; X = O, S, Se, Te) compounds are investigated. According to the results, we identify a series of dynamically, mechanically and thermally stable materials with different magnetic configurations. V2O3, V2S3, V2Se3, V2Te3, Cr2Se3, Cr2Te3, Fe2O3, Fe2S3 and Fe2Se3 are antiferromagnetic (AFM) insulators, with energy gaps ranging from 0.09 eV to 1.67 eV. Cr2S3 is a ferromagnetic (FM) insulator with an indirect energy gap of 0.90 eV. Mn2S3, Mn2Se3, Mn2Te3 and Co2Se3 are FM metals. Particularly, we predict several rare AFM metals, including Fe2Te3, Co2Te3 and Ni2Se3. The exchange coupling parameters are obtained by fitting the Ising model to first-principles energies to help understand the magnetic mechanism. Monte Carlo simulations indicate that the magnetic phase-transition temperatures of these materials span a wide range, from approximately 150 K to 1000 K. The electronic structures and the magnetic ground states of these 2D compounds can be effectively tuned by biaxial strain and charge doping. This work enriches the family of 2D magnetic materials, especially the family of rare FM insulators and AFM metals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信