“高熵合金设计的预测和启发式框架:整合固溶强化与机器学习”[J]。合金。Compd. 1027 (2025) 180484]

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Zheng Zhang, Yuanpei Meng, Zongyu Zhang, Yansong Yang, Ying Chen, Chuanting Wang, Yong He
{"title":"“高熵合金设计的预测和启发式框架:整合固溶强化与机器学习”[J]。合金。Compd. 1027 (2025) 180484]","authors":"Zheng Zhang, Yuanpei Meng, Zongyu Zhang, Yansong Yang, Ying Chen, Chuanting Wang, Yong He","doi":"10.1016/j.jallcom.2025.181117","DOIUrl":null,"url":null,"abstract":"The authors regret “<span><span>Fig. 6</span></span>(b). was not shown in the published version. Correction: <span><span>Fig. 6</span></span> should read as follows.”.<figure><span><img alt=\"Fig. 6\" aria-describedby=\"cap0005\" height=\"276\" src=\"https://ars.els-cdn.com/content/image/1-s2.0-S0925838825026787-gr1.jpg\"/><ol><li><span><span>Download: <span>Download high-res image (220KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span><span><span><p><span>Fig. 6</span>. The ST Complexity distribution of the generated equations and the fit of the target formulation. (a) Relationship between formula training fit and formula complexity obtained by ST algorithm development. The red crosses are the selected target formulas. (b) Calculation value for the data set through Eq. (8).</p></span></span></figure>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"37 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrigendum to “Predictive and heuristic framework for high entropy alloys design: Integrating solid solution strengthening with machine learning” [J. Alloy. Compd. 1027 (2025) 180484]\",\"authors\":\"Zheng Zhang, Yuanpei Meng, Zongyu Zhang, Yansong Yang, Ying Chen, Chuanting Wang, Yong He\",\"doi\":\"10.1016/j.jallcom.2025.181117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors regret “<span><span>Fig. 6</span></span>(b). was not shown in the published version. Correction: <span><span>Fig. 6</span></span> should read as follows.”.<figure><span><img alt=\\\"Fig. 6\\\" aria-describedby=\\\"cap0005\\\" height=\\\"276\\\" src=\\\"https://ars.els-cdn.com/content/image/1-s2.0-S0925838825026787-gr1.jpg\\\"/><ol><li><span><span>Download: <span>Download high-res image (220KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span><span><span><p><span>Fig. 6</span>. The ST Complexity distribution of the generated equations and the fit of the target formulation. (a) Relationship between formula training fit and formula complexity obtained by ST algorithm development. The red crosses are the selected target formulas. (b) Calculation value for the data set through Eq. (8).</p></span></span></figure>\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.181117\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.181117","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

图6(b)。在出版的版本中没有出现。更正:图6应如下所示。下载:下载高分辨率图片(220KB)下载:下载全尺寸图片6. 生成方程的ST复杂度分布和目标公式的拟合。(a) ST算法开发得到的公式训练拟合与公式复杂度的关系。红色的叉是选择的目标公式。(b)通过式(8)对数据集的计算值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corrigendum to “Predictive and heuristic framework for high entropy alloys design: Integrating solid solution strengthening with machine learning” [J. Alloy. Compd. 1027 (2025) 180484]
The authors regret “Fig. 6(b). was not shown in the published version. Correction: Fig. 6 should read as follows.”.
Fig. 6
  1. Download: Download high-res image (220KB)
  2. Download: Download full-size image

Fig. 6. The ST Complexity distribution of the generated equations and the fit of the target formulation. (a) Relationship between formula training fit and formula complexity obtained by ST algorithm development. The red crosses are the selected target formulas. (b) Calculation value for the data set through Eq. (8).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信