{"title":"范德华系统中腔诱导量子干涉和集体相互作用","authors":"Jianshu Cao, Eli Pollak","doi":"10.1021/acs.jpclett.5c00031","DOIUrl":null,"url":null,"abstract":"The central topic of this letter is to show that light-matter hybridization not only gives rise to novel dynamic responses but can also modify intermolecular interactions and induce new structural order. Using the van der Waals (vdW) system in an optical cavity as an example, we predict the effects of quantum interference and collectivity in cavity-induced many-body dispersion forces. Specifically, the leading order correction due to cavity-induced quantum fluctuations leads to 3-body and 4-body vdW interactions, which can align intermolecular vectors and are not pairwise additive. In addition, the cavity-induced dipole leads to a single-molecule energy shift that aligns individual molecules, and a pairwise interaction that scales as <i>R</i><sup>–3</sup> instead of the standard <i>R</i><sup>–6</sup> distance scaling. The coefficients of all these cavity-induced interactions depend on the cavity frequency and are renormalized by the effective Rabi frequency, which in turn depends on the particle density. Finally, we study the interaction of the vdW system in a cavity with an external object and find a significant enhancement in the interaction range due to modified distance scaling laws. These theoretical predictions suggest the possibility of cavity-induced nematic or smectic order and may provide an essential clue to understand intriguing phenomena observed in optical cavities, such as strongly modified ground-state reactivity, ion transport and charge mobility.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"47 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cavity-Induced Quantum Interference and Collective Interactions in van der Waals Systems\",\"authors\":\"Jianshu Cao, Eli Pollak\",\"doi\":\"10.1021/acs.jpclett.5c00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The central topic of this letter is to show that light-matter hybridization not only gives rise to novel dynamic responses but can also modify intermolecular interactions and induce new structural order. Using the van der Waals (vdW) system in an optical cavity as an example, we predict the effects of quantum interference and collectivity in cavity-induced many-body dispersion forces. Specifically, the leading order correction due to cavity-induced quantum fluctuations leads to 3-body and 4-body vdW interactions, which can align intermolecular vectors and are not pairwise additive. In addition, the cavity-induced dipole leads to a single-molecule energy shift that aligns individual molecules, and a pairwise interaction that scales as <i>R</i><sup>–3</sup> instead of the standard <i>R</i><sup>–6</sup> distance scaling. The coefficients of all these cavity-induced interactions depend on the cavity frequency and are renormalized by the effective Rabi frequency, which in turn depends on the particle density. Finally, we study the interaction of the vdW system in a cavity with an external object and find a significant enhancement in the interaction range due to modified distance scaling laws. These theoretical predictions suggest the possibility of cavity-induced nematic or smectic order and may provide an essential clue to understand intriguing phenomena observed in optical cavities, such as strongly modified ground-state reactivity, ion transport and charge mobility.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.5c00031\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00031","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Cavity-Induced Quantum Interference and Collective Interactions in van der Waals Systems
The central topic of this letter is to show that light-matter hybridization not only gives rise to novel dynamic responses but can also modify intermolecular interactions and induce new structural order. Using the van der Waals (vdW) system in an optical cavity as an example, we predict the effects of quantum interference and collectivity in cavity-induced many-body dispersion forces. Specifically, the leading order correction due to cavity-induced quantum fluctuations leads to 3-body and 4-body vdW interactions, which can align intermolecular vectors and are not pairwise additive. In addition, the cavity-induced dipole leads to a single-molecule energy shift that aligns individual molecules, and a pairwise interaction that scales as R–3 instead of the standard R–6 distance scaling. The coefficients of all these cavity-induced interactions depend on the cavity frequency and are renormalized by the effective Rabi frequency, which in turn depends on the particle density. Finally, we study the interaction of the vdW system in a cavity with an external object and find a significant enhancement in the interaction range due to modified distance scaling laws. These theoretical predictions suggest the possibility of cavity-induced nematic or smectic order and may provide an essential clue to understand intriguing phenomena observed in optical cavities, such as strongly modified ground-state reactivity, ion transport and charge mobility.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.