Hao Zhou,Mingjun Shi,Wenhao Yang,Ning Song,Xiliang Luo
{"title":"具有肌氨酸分支的工程防污肽用于真实生物样品中HER2生物标志物的鲁棒电化学检测。","authors":"Hao Zhou,Mingjun Shi,Wenhao Yang,Ning Song,Xiliang Luo","doi":"10.1021/acssensors.5c00082","DOIUrl":null,"url":null,"abstract":"In complex biological matrices, the nonspecific adsorption phenomena occurring on the surfaces of electrochemical biosensors represent a considerable challenge for the precise detection of targets in heterogeneous biological samples. Furthermore, the presence of protein hydrolases in biofluids also affects the stability of biosensing devices utilizing natural proteins or peptides. It is therefore imperative to develop sensing devices capable of effectively minimizing such effects in real biological samples. Herein, we engineered a sarcosine branch-chain peptide (SBCP) with a strong antifouling capability to avoid biofouling and enhanced stability to resist hydrolysis by proteases. The peptide is composed of three sections: an anchoring sequence (CPPPP), an antifouling sequence (EK(Sar)EK(Sar)EK(Sar)EK(Sar)), and a recognition sequence (HLTVSPWY). An electrochemical biosensor was developed through the electrodeposition of poly(3,4-ethylenedioxythiophene) (PEDOT) incorporated with poly(norepinephrine) (PNE) on an electrode surface, followed by the electrodeposition of gold nanoparticles and the self-assembly of SBCP. The biosensor constructed using the SBCP containing a specific recognizing peptide sequence for the cancer biomarker human epidermal growth factor receptor 2 (HER2) was capable of sensitively detecting target HER2, within the concentration range of 1.0 pg mL-1 to 1.0 μg mL-1 and with a limit of detection of 0.37 pg mL-1. Moreover, the biosensor demonstrated antifouling ability and the capacity to accurately detect the target in human serum, exhibiting a high degree of concordance with the assaying results of ELISA kits. These findings suggest that the biosensor based on the engineered peptides possesses promising potential for practical applications.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"33 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineered Antifouling Peptides with Sarcosine Branches for Robust Electrochemical Detection of the HER2 Biomarker in Real Biological Samples.\",\"authors\":\"Hao Zhou,Mingjun Shi,Wenhao Yang,Ning Song,Xiliang Luo\",\"doi\":\"10.1021/acssensors.5c00082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In complex biological matrices, the nonspecific adsorption phenomena occurring on the surfaces of electrochemical biosensors represent a considerable challenge for the precise detection of targets in heterogeneous biological samples. Furthermore, the presence of protein hydrolases in biofluids also affects the stability of biosensing devices utilizing natural proteins or peptides. It is therefore imperative to develop sensing devices capable of effectively minimizing such effects in real biological samples. Herein, we engineered a sarcosine branch-chain peptide (SBCP) with a strong antifouling capability to avoid biofouling and enhanced stability to resist hydrolysis by proteases. The peptide is composed of three sections: an anchoring sequence (CPPPP), an antifouling sequence (EK(Sar)EK(Sar)EK(Sar)EK(Sar)), and a recognition sequence (HLTVSPWY). An electrochemical biosensor was developed through the electrodeposition of poly(3,4-ethylenedioxythiophene) (PEDOT) incorporated with poly(norepinephrine) (PNE) on an electrode surface, followed by the electrodeposition of gold nanoparticles and the self-assembly of SBCP. The biosensor constructed using the SBCP containing a specific recognizing peptide sequence for the cancer biomarker human epidermal growth factor receptor 2 (HER2) was capable of sensitively detecting target HER2, within the concentration range of 1.0 pg mL-1 to 1.0 μg mL-1 and with a limit of detection of 0.37 pg mL-1. Moreover, the biosensor demonstrated antifouling ability and the capacity to accurately detect the target in human serum, exhibiting a high degree of concordance with the assaying results of ELISA kits. These findings suggest that the biosensor based on the engineered peptides possesses promising potential for practical applications.\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssensors.5c00082\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.5c00082","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Engineered Antifouling Peptides with Sarcosine Branches for Robust Electrochemical Detection of the HER2 Biomarker in Real Biological Samples.
In complex biological matrices, the nonspecific adsorption phenomena occurring on the surfaces of electrochemical biosensors represent a considerable challenge for the precise detection of targets in heterogeneous biological samples. Furthermore, the presence of protein hydrolases in biofluids also affects the stability of biosensing devices utilizing natural proteins or peptides. It is therefore imperative to develop sensing devices capable of effectively minimizing such effects in real biological samples. Herein, we engineered a sarcosine branch-chain peptide (SBCP) with a strong antifouling capability to avoid biofouling and enhanced stability to resist hydrolysis by proteases. The peptide is composed of three sections: an anchoring sequence (CPPPP), an antifouling sequence (EK(Sar)EK(Sar)EK(Sar)EK(Sar)), and a recognition sequence (HLTVSPWY). An electrochemical biosensor was developed through the electrodeposition of poly(3,4-ethylenedioxythiophene) (PEDOT) incorporated with poly(norepinephrine) (PNE) on an electrode surface, followed by the electrodeposition of gold nanoparticles and the self-assembly of SBCP. The biosensor constructed using the SBCP containing a specific recognizing peptide sequence for the cancer biomarker human epidermal growth factor receptor 2 (HER2) was capable of sensitively detecting target HER2, within the concentration range of 1.0 pg mL-1 to 1.0 μg mL-1 and with a limit of detection of 0.37 pg mL-1. Moreover, the biosensor demonstrated antifouling ability and the capacity to accurately detect the target in human serum, exhibiting a high degree of concordance with the assaying results of ELISA kits. These findings suggest that the biosensor based on the engineered peptides possesses promising potential for practical applications.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.