Maria F Palafox,Lisa Boatner,Blake R Wilde,Heather Christofk,Keriann M Backus,Valerie A Arboleda
{"title":"用化学蛋白质组学检测到的氨基酸优先排序疾病相关的错义变异。","authors":"Maria F Palafox,Lisa Boatner,Blake R Wilde,Heather Christofk,Keriann M Backus,Valerie A Arboleda","doi":"10.1016/j.ajhg.2025.04.017","DOIUrl":null,"url":null,"abstract":"Missense variants are the most common type of protein-altering genetic variation. Due to their wide-ranging potential functional consequences, missense variants are challenging to interpret and, as a result, are often classified as unknown pathogenicity or as variants of uncertain significance (VUSs). Genomic-based predictive tools have made significant inroads into the challenge of accurately pinpointing functional missense variants by providing genome-wide assessments of deleteriousness or potential pathogenicity. Complementary to these tools, here we provide an initial study into the utility of harnessing protein-based measures of amino acid reactivity to delineate functionally significant missense variants. These reactivity measurements, which are generated using mass spectrometry-based chemoproteomic methods, have already proved capable of pinpointing functional sites on proteins, which provide the added value of delineating potential sites suitable for drug-development efforts. Here, using published chemoproteomic datasets for three specific privileged amino acids, cysteine, lysine, and tyrosine, we assessed the utility of proteomic reactivity measurements to identify clinically important variants and regions within monogenic-disease-associated genes. We found that genes where amino acids are detected via chemoproteomics are enriched for monogenic-disease phenotypes, indicative of functional importance. Chemoproteomic-detected amino acids (CpDAAs) are enriched at and around sites with known pathogenic missense variants when assessed with either one- or three-dimensional protein structures. To further illustrate the utility of our findings, we found that regions at or around CpDAAs in fumarate hydratase (FH) were enriched for VUSs and pathogenic variants, which we validate through demonstration of an altered FH oligomerization state. Collectively, our study highlights the potential of chemoproteomic and genetic data integration for enhancing the identification of functional genetic variants and protein sites with potential value for drug-development efforts.","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"34 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prioritizing disease-associated missense variants with chemoproteomic-detected amino acids.\",\"authors\":\"Maria F Palafox,Lisa Boatner,Blake R Wilde,Heather Christofk,Keriann M Backus,Valerie A Arboleda\",\"doi\":\"10.1016/j.ajhg.2025.04.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Missense variants are the most common type of protein-altering genetic variation. Due to their wide-ranging potential functional consequences, missense variants are challenging to interpret and, as a result, are often classified as unknown pathogenicity or as variants of uncertain significance (VUSs). Genomic-based predictive tools have made significant inroads into the challenge of accurately pinpointing functional missense variants by providing genome-wide assessments of deleteriousness or potential pathogenicity. Complementary to these tools, here we provide an initial study into the utility of harnessing protein-based measures of amino acid reactivity to delineate functionally significant missense variants. These reactivity measurements, which are generated using mass spectrometry-based chemoproteomic methods, have already proved capable of pinpointing functional sites on proteins, which provide the added value of delineating potential sites suitable for drug-development efforts. Here, using published chemoproteomic datasets for three specific privileged amino acids, cysteine, lysine, and tyrosine, we assessed the utility of proteomic reactivity measurements to identify clinically important variants and regions within monogenic-disease-associated genes. We found that genes where amino acids are detected via chemoproteomics are enriched for monogenic-disease phenotypes, indicative of functional importance. Chemoproteomic-detected amino acids (CpDAAs) are enriched at and around sites with known pathogenic missense variants when assessed with either one- or three-dimensional protein structures. To further illustrate the utility of our findings, we found that regions at or around CpDAAs in fumarate hydratase (FH) were enriched for VUSs and pathogenic variants, which we validate through demonstration of an altered FH oligomerization state. Collectively, our study highlights the potential of chemoproteomic and genetic data integration for enhancing the identification of functional genetic variants and protein sites with potential value for drug-development efforts.\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2025.04.017\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.04.017","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Prioritizing disease-associated missense variants with chemoproteomic-detected amino acids.
Missense variants are the most common type of protein-altering genetic variation. Due to their wide-ranging potential functional consequences, missense variants are challenging to interpret and, as a result, are often classified as unknown pathogenicity or as variants of uncertain significance (VUSs). Genomic-based predictive tools have made significant inroads into the challenge of accurately pinpointing functional missense variants by providing genome-wide assessments of deleteriousness or potential pathogenicity. Complementary to these tools, here we provide an initial study into the utility of harnessing protein-based measures of amino acid reactivity to delineate functionally significant missense variants. These reactivity measurements, which are generated using mass spectrometry-based chemoproteomic methods, have already proved capable of pinpointing functional sites on proteins, which provide the added value of delineating potential sites suitable for drug-development efforts. Here, using published chemoproteomic datasets for three specific privileged amino acids, cysteine, lysine, and tyrosine, we assessed the utility of proteomic reactivity measurements to identify clinically important variants and regions within monogenic-disease-associated genes. We found that genes where amino acids are detected via chemoproteomics are enriched for monogenic-disease phenotypes, indicative of functional importance. Chemoproteomic-detected amino acids (CpDAAs) are enriched at and around sites with known pathogenic missense variants when assessed with either one- or three-dimensional protein structures. To further illustrate the utility of our findings, we found that regions at or around CpDAAs in fumarate hydratase (FH) were enriched for VUSs and pathogenic variants, which we validate through demonstration of an altered FH oligomerization state. Collectively, our study highlights the potential of chemoproteomic and genetic data integration for enhancing the identification of functional genetic variants and protein sites with potential value for drug-development efforts.
期刊介绍:
The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.