全共轭Sp2碳链共价有机框架加速激子过程用于水修复的单线态氧光合作用。

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Siyuan Guo,Kun Zhao,Luwen Liang,Zifan Li,Bin Han,Xinwen Ou,Shan Yao,Zhiqing Lin,Zhimin Dong,Yunhai Liu,Liqun Ye,Bo Weng,Yanpeng Cai,Zhifeng Yang
{"title":"全共轭Sp2碳链共价有机框架加速激子过程用于水修复的单线态氧光合作用。","authors":"Siyuan Guo,Kun Zhao,Luwen Liang,Zifan Li,Bin Han,Xinwen Ou,Shan Yao,Zhiqing Lin,Zhimin Dong,Yunhai Liu,Liqun Ye,Bo Weng,Yanpeng Cai,Zhifeng Yang","doi":"10.1002/anie.202509141","DOIUrl":null,"url":null,"abstract":"Photocatalytic oxygen (O2) activation via energy transfer offers a sustainable approach for singlet oxygen (1O2) synthesis, while its performance suffers from the ultrafast exciton dissociation and sluggish intersystem crossing (ISC) process. Up to date, exciton regulation is still in its infancy. Here, via linkage engineering of covalent organic frameworks (COFs), we propose a fully conjugated sp2 carbon-linked COFs (sp2c-Py-Bpy COFs) with strong exciton interaction and fast ISC for boosted 1O2 photosynthesis. The sp2c-Py-Bpy COFs delivers a record-high 1O2 yield (624 μM min-1) with 100% selectivity, which is ca. 8 times that of the traditional imine-bridged COFs (Im-Py-Bpy COFs, ca. 95.8% selectivity), outperforming documented systems. Transient absorption spectroscopy and theoretical investigations demonstrate that the fully conjugated sp2 carbon linkage of sp2c-Py-Bpy COFs can enhance Coulomb interaction, promote ISC and push forward the transfer of triplet exciton to the O2 adsorption sites throughout the COFs matrix, jointly facilitating the energy transfer process for efficient 1O2 photosynthesis and bypassing the traditional electron transfer process. Hence, sp2c-Py-Bpy COFs can selectively degrade acetaminophen within minutes under visible light irradiation and enables stable degradation of emerging pollutants in a continuous flow membrane reactor (20 × 30 × 2 cm) utilizing natural sunlight and dissolved O2.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"172 1","pages":"e202509141"},"PeriodicalIF":16.1000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully Conjugated Sp2 Carbon-Linked Covalent Organic Frameworks Enables Accelerated Exciton Process for Superior Singlet Oxygen Photosynthesis for Water Remediation.\",\"authors\":\"Siyuan Guo,Kun Zhao,Luwen Liang,Zifan Li,Bin Han,Xinwen Ou,Shan Yao,Zhiqing Lin,Zhimin Dong,Yunhai Liu,Liqun Ye,Bo Weng,Yanpeng Cai,Zhifeng Yang\",\"doi\":\"10.1002/anie.202509141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photocatalytic oxygen (O2) activation via energy transfer offers a sustainable approach for singlet oxygen (1O2) synthesis, while its performance suffers from the ultrafast exciton dissociation and sluggish intersystem crossing (ISC) process. Up to date, exciton regulation is still in its infancy. Here, via linkage engineering of covalent organic frameworks (COFs), we propose a fully conjugated sp2 carbon-linked COFs (sp2c-Py-Bpy COFs) with strong exciton interaction and fast ISC for boosted 1O2 photosynthesis. The sp2c-Py-Bpy COFs delivers a record-high 1O2 yield (624 μM min-1) with 100% selectivity, which is ca. 8 times that of the traditional imine-bridged COFs (Im-Py-Bpy COFs, ca. 95.8% selectivity), outperforming documented systems. Transient absorption spectroscopy and theoretical investigations demonstrate that the fully conjugated sp2 carbon linkage of sp2c-Py-Bpy COFs can enhance Coulomb interaction, promote ISC and push forward the transfer of triplet exciton to the O2 adsorption sites throughout the COFs matrix, jointly facilitating the energy transfer process for efficient 1O2 photosynthesis and bypassing the traditional electron transfer process. Hence, sp2c-Py-Bpy COFs can selectively degrade acetaminophen within minutes under visible light irradiation and enables stable degradation of emerging pollutants in a continuous flow membrane reactor (20 × 30 × 2 cm) utilizing natural sunlight and dissolved O2.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"172 1\",\"pages\":\"e202509141\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202509141\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202509141","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光催化氧(O2)的能量转移活化为单线态氧(1O2)的合成提供了一种可持续的方法,但其性能受到超快激子解离和缓慢的系统间交叉(ISC)过程的影响。迄今为止,激子调控仍处于起步阶段。本文通过共价有机框架(COFs)的连锁工程,提出了一种具有强激子相互作用和快速ISC的全共轭sp2碳链COFs (sp2c-Py-Bpy COFs),用于促进1O2光合作用。sp2c-Py-Bpy COFs可提供创纪录的10o2产率(624 μM min-1),选择性为100%,约为传统亚胺桥接COFs (Im-Py-Bpy COFs,选择性约为95.8%)的8倍,优于已有的体系。瞬态吸收光谱和理论研究表明,sp2c-Py-Bpy COFs的完全共轭sp2碳键可以增强库仑相互作用,促进ISC,并推动三重态激子向整个COFs基体的O2吸附位点转移,共同促进了有效的1O2光合作用的能量转移过程,绕过了传统的电子转移过程。因此,sp2c-Py-Bpy COFs可以在可见光照射下在几分钟内选择性地降解对乙酰氨基酚,并且可以在连续流膜反应器(20 × 30 × 2 cm)中利用自然阳光和溶解的O2稳定降解新出现的污染物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully Conjugated Sp2 Carbon-Linked Covalent Organic Frameworks Enables Accelerated Exciton Process for Superior Singlet Oxygen Photosynthesis for Water Remediation.
Photocatalytic oxygen (O2) activation via energy transfer offers a sustainable approach for singlet oxygen (1O2) synthesis, while its performance suffers from the ultrafast exciton dissociation and sluggish intersystem crossing (ISC) process. Up to date, exciton regulation is still in its infancy. Here, via linkage engineering of covalent organic frameworks (COFs), we propose a fully conjugated sp2 carbon-linked COFs (sp2c-Py-Bpy COFs) with strong exciton interaction and fast ISC for boosted 1O2 photosynthesis. The sp2c-Py-Bpy COFs delivers a record-high 1O2 yield (624 μM min-1) with 100% selectivity, which is ca. 8 times that of the traditional imine-bridged COFs (Im-Py-Bpy COFs, ca. 95.8% selectivity), outperforming documented systems. Transient absorption spectroscopy and theoretical investigations demonstrate that the fully conjugated sp2 carbon linkage of sp2c-Py-Bpy COFs can enhance Coulomb interaction, promote ISC and push forward the transfer of triplet exciton to the O2 adsorption sites throughout the COFs matrix, jointly facilitating the energy transfer process for efficient 1O2 photosynthesis and bypassing the traditional electron transfer process. Hence, sp2c-Py-Bpy COFs can selectively degrade acetaminophen within minutes under visible light irradiation and enables stable degradation of emerging pollutants in a continuous flow membrane reactor (20 × 30 × 2 cm) utilizing natural sunlight and dissolved O2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信