生物炭作为恢复退化土壤的长期策略:大豆连作中土壤-代谢物-微生物相互作用的多组学分析

IF 3.6 2区 农林科学 Q2 ENVIRONMENTAL SCIENCES
Di Wu, Weiming Zhang, Wen Sun, Yuxue Zhang, Wenqi Gu, Yuanyuan Sun, Zifan Liu, Wenjia Wang, Wenfu Chen
{"title":"生物炭作为恢复退化土壤的长期策略:大豆连作中土壤-代谢物-微生物相互作用的多组学分析","authors":"Di Wu, Weiming Zhang, Wen Sun, Yuxue Zhang, Wenqi Gu, Yuanyuan Sun, Zifan Liu, Wenjia Wang, Wenfu Chen","doi":"10.1002/ldr.5664","DOIUrl":null,"url":null,"abstract":"Biochar shows significant promise as a soil amendment for enhancing soil fertility and crop yield, but its long‐term influence on soil–metabolite–microbe interactions in continuous soybean systems remains underexplored. In this decade‐long field study, we investigated the effects of different biochar doses (CA: biochar, 12 t·ha<jats:sup>−1</jats:sup>; CB: biochar, 24 t·ha<jats:sup>−1</jats:sup>) compared to conventional fertilization (CF) on soil properties, microbial communities, and rhizosphere metabolites. The results showed that biochar demonstrated dose‐dependent improvements in soil properties, including enhanced porosity, pH, organic carbon content, nutrient availability, and enzyme activities, while reducing bulk density. Notably, biochar application restructured microbial communities, with CB treatment enriching beneficial microorganisms (<jats:italic>MND1</jats:italic>, <jats:italic>Ellin6067</jats:italic>, <jats:italic>Vicinamibacteraceae</jats:italic>, and <jats:italic>Conocybe</jats:italic>) while suppressing potential pathogens (<jats:italic>Ceratobasidium</jats:italic> and <jats:italic>Cyathus</jats:italic>). Simultaneously, biochar induced significant modulation of the rhizosphere metabolome, particularly affecting monoterpenoid biosynthesis pathways and plant defense mechanisms, with altered metabolites strongly corresponding to improved soil properties. Multi‐omics network analysis revealed a cascading effect where biochar‐amended soil properties enhanced beneficial metabolites (e.g., (−)‐3‐dehydromangostinic acid and tert‐butyl hydroquinone) while suppressing D‐panthotenate, 4‐Pyridoxate, and (−)‐alpha‐Pinene, resulting in the beneficial microorganism communities (<jats:italic>Conocybe</jats:italic> and <jats:italic>Vicinamibacteraceae</jats:italic>) increasing and pathogen (<jats:italic>Cyathus</jats:italic>) decreasing. Our findings provide novel insights into biochar's long‐term impacts on soil ecological environments and present an innovative strategy for the sustainable restoration of degraded soils under continuous soybean cultivation.","PeriodicalId":203,"journal":{"name":"Land Degradation & Development","volume":"3 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochar as a Long‐Term Strategy for Rehabilitating Degraded Soils: Multi‐Omics Analysis of Soil–Metabolite–Microbe Interactions in Continuous Soybean Cultivation\",\"authors\":\"Di Wu, Weiming Zhang, Wen Sun, Yuxue Zhang, Wenqi Gu, Yuanyuan Sun, Zifan Liu, Wenjia Wang, Wenfu Chen\",\"doi\":\"10.1002/ldr.5664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biochar shows significant promise as a soil amendment for enhancing soil fertility and crop yield, but its long‐term influence on soil–metabolite–microbe interactions in continuous soybean systems remains underexplored. In this decade‐long field study, we investigated the effects of different biochar doses (CA: biochar, 12 t·ha<jats:sup>−1</jats:sup>; CB: biochar, 24 t·ha<jats:sup>−1</jats:sup>) compared to conventional fertilization (CF) on soil properties, microbial communities, and rhizosphere metabolites. The results showed that biochar demonstrated dose‐dependent improvements in soil properties, including enhanced porosity, pH, organic carbon content, nutrient availability, and enzyme activities, while reducing bulk density. Notably, biochar application restructured microbial communities, with CB treatment enriching beneficial microorganisms (<jats:italic>MND1</jats:italic>, <jats:italic>Ellin6067</jats:italic>, <jats:italic>Vicinamibacteraceae</jats:italic>, and <jats:italic>Conocybe</jats:italic>) while suppressing potential pathogens (<jats:italic>Ceratobasidium</jats:italic> and <jats:italic>Cyathus</jats:italic>). Simultaneously, biochar induced significant modulation of the rhizosphere metabolome, particularly affecting monoterpenoid biosynthesis pathways and plant defense mechanisms, with altered metabolites strongly corresponding to improved soil properties. Multi‐omics network analysis revealed a cascading effect where biochar‐amended soil properties enhanced beneficial metabolites (e.g., (−)‐3‐dehydromangostinic acid and tert‐butyl hydroquinone) while suppressing D‐panthotenate, 4‐Pyridoxate, and (−)‐alpha‐Pinene, resulting in the beneficial microorganism communities (<jats:italic>Conocybe</jats:italic> and <jats:italic>Vicinamibacteraceae</jats:italic>) increasing and pathogen (<jats:italic>Cyathus</jats:italic>) decreasing. Our findings provide novel insights into biochar's long‐term impacts on soil ecological environments and present an innovative strategy for the sustainable restoration of degraded soils under continuous soybean cultivation.\",\"PeriodicalId\":203,\"journal\":{\"name\":\"Land Degradation & Development\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Land Degradation & Development\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/ldr.5664\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Degradation & Development","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ldr.5664","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

生物炭作为一种土壤改良剂在提高土壤肥力和作物产量方面显示出巨大的前景,但其对连续大豆系统中土壤-代谢物-微生物相互作用的长期影响仍未得到充分研究。在这项长达十年的实地研究中,我们研究了不同剂量的生物炭(CA:生物炭,12 t·ha−1;CB:生物炭,24 t·ha−1)与常规施肥(CF)对土壤特性、微生物群落和根际代谢物的影响。结果表明,生物炭对土壤特性的改善表现出剂量依赖性,包括孔隙度、pH值、有机碳含量、养分有效性和酶活性的增强,同时降低了容重。值得注意的是,生物炭的应用重组了微生物群落,炭黑处理丰富了有益微生物(MND1、Ellin6067、Vicinamibacteraceae和Conocybe),同时抑制了潜在的病原体(Ceratobasidium和Cyathus)。同时,生物炭诱导了根际代谢组的显著调节,特别是对单萜类生物合成途径和植物防御机制的影响,代谢产物的改变与土壤性质的改善密切相关。多组学网络分析揭示了一种级联效应,即生物炭修饰的土壤特性增强了有益代谢产物(例如(−)‐3‐脱氢山竹酸和叔丁基对苯二酚),同时抑制了D‐泛硫酸盐、4‐吡哆酸盐和(−)‐α‐蒎烯,导致有益微生物群落(Conocybe和Vicinamibacteraceae)增加,病原体(Cyathus)减少。我们的研究结果为生物炭对土壤生态环境的长期影响提供了新的见解,并为大豆连作下退化土壤的可持续恢复提供了创新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biochar as a Long‐Term Strategy for Rehabilitating Degraded Soils: Multi‐Omics Analysis of Soil–Metabolite–Microbe Interactions in Continuous Soybean Cultivation
Biochar shows significant promise as a soil amendment for enhancing soil fertility and crop yield, but its long‐term influence on soil–metabolite–microbe interactions in continuous soybean systems remains underexplored. In this decade‐long field study, we investigated the effects of different biochar doses (CA: biochar, 12 t·ha−1; CB: biochar, 24 t·ha−1) compared to conventional fertilization (CF) on soil properties, microbial communities, and rhizosphere metabolites. The results showed that biochar demonstrated dose‐dependent improvements in soil properties, including enhanced porosity, pH, organic carbon content, nutrient availability, and enzyme activities, while reducing bulk density. Notably, biochar application restructured microbial communities, with CB treatment enriching beneficial microorganisms (MND1, Ellin6067, Vicinamibacteraceae, and Conocybe) while suppressing potential pathogens (Ceratobasidium and Cyathus). Simultaneously, biochar induced significant modulation of the rhizosphere metabolome, particularly affecting monoterpenoid biosynthesis pathways and plant defense mechanisms, with altered metabolites strongly corresponding to improved soil properties. Multi‐omics network analysis revealed a cascading effect where biochar‐amended soil properties enhanced beneficial metabolites (e.g., (−)‐3‐dehydromangostinic acid and tert‐butyl hydroquinone) while suppressing D‐panthotenate, 4‐Pyridoxate, and (−)‐alpha‐Pinene, resulting in the beneficial microorganism communities (Conocybe and Vicinamibacteraceae) increasing and pathogen (Cyathus) decreasing. Our findings provide novel insights into biochar's long‐term impacts on soil ecological environments and present an innovative strategy for the sustainable restoration of degraded soils under continuous soybean cultivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Land Degradation & Development
Land Degradation & Development 农林科学-环境科学
CiteScore
7.70
自引率
8.50%
发文量
379
审稿时长
5.5 months
期刊介绍: Land Degradation & Development is an international journal which seeks to promote rational study of the recognition, monitoring, control and rehabilitation of degradation in terrestrial environments. The journal focuses on: - what land degradation is; - what causes land degradation; - the impacts of land degradation - the scale of land degradation; - the history, current status or future trends of land degradation; - avoidance, mitigation and control of land degradation; - remedial actions to rehabilitate or restore degraded land; - sustainable land management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信