量子和经典混沌自旋模型向平衡演化的时间尺度。

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Fausto Borgonovi, Felix M Izrailev, Lea F Santos
{"title":"量子和经典混沌自旋模型向平衡演化的时间尺度。","authors":"Fausto Borgonovi, Felix M Izrailev, Lea F Santos","doi":"10.1103/PhysRevE.111.044210","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate quench dynamics in a one-dimensional spin model, comparing both quantum and classical descriptions. Our primary focus is on the different timescales involved in the evolution of the observables as they approach statistical relaxation. Numerical simulations, supported by semianalytical analysis, reveal that the relaxation of single-particle energies (global quantity) and on-site magnetization (local observable) occurs on a timescale independent of the system size L. This relaxation process is equally well-described by classical equations of motion and quantum solutions, demonstrating excellent quantum-classical correspondence, provided the system is strongly chaotic. The correspondence persists even for small quantum spin values (S=1), where a semiclassical approximation is not applicable. Conversely, for the participation ratio, which characterizes the initial state spread in the many-body Hilbert space and which lacks a classical analog, the relaxation timescale is system-size dependent.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 4-1","pages":"044210"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Timescales of quantum and classical chaotic spin models evolving toward equilibrium.\",\"authors\":\"Fausto Borgonovi, Felix M Izrailev, Lea F Santos\",\"doi\":\"10.1103/PhysRevE.111.044210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate quench dynamics in a one-dimensional spin model, comparing both quantum and classical descriptions. Our primary focus is on the different timescales involved in the evolution of the observables as they approach statistical relaxation. Numerical simulations, supported by semianalytical analysis, reveal that the relaxation of single-particle energies (global quantity) and on-site magnetization (local observable) occurs on a timescale independent of the system size L. This relaxation process is equally well-described by classical equations of motion and quantum solutions, demonstrating excellent quantum-classical correspondence, provided the system is strongly chaotic. The correspondence persists even for small quantum spin values (S=1), where a semiclassical approximation is not applicable. Conversely, for the participation ratio, which characterizes the initial state spread in the many-body Hilbert space and which lacks a classical analog, the relaxation timescale is system-size dependent.</p>\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"111 4-1\",\"pages\":\"044210\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.111.044210\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.044210","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一维自旋模型中的猝灭动力学,比较了量子和经典描述。我们的主要焦点是不同的时间尺度涉及到可观测的演变,因为他们接近统计松弛。半解析分析支持的数值模拟表明,单粒子能量(全局量)和现场磁化(局部可观测)的弛豫发生在与系统大小l无关的时间尺度上,这种弛豫过程同样可以用经典运动方程和量子解很好地描述,在系统是强混沌的情况下,表现出优异的量子-经典对应关系。即使对于小的量子自旋值(S=1),这种对应关系仍然存在,其中半经典近似不适用。相反,对于参与比,表征初始状态在多体希尔伯特空间中的传播,缺乏经典模拟,松弛时间标度依赖于系统大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Timescales of quantum and classical chaotic spin models evolving toward equilibrium.

We investigate quench dynamics in a one-dimensional spin model, comparing both quantum and classical descriptions. Our primary focus is on the different timescales involved in the evolution of the observables as they approach statistical relaxation. Numerical simulations, supported by semianalytical analysis, reveal that the relaxation of single-particle energies (global quantity) and on-site magnetization (local observable) occurs on a timescale independent of the system size L. This relaxation process is equally well-described by classical equations of motion and quantum solutions, demonstrating excellent quantum-classical correspondence, provided the system is strongly chaotic. The correspondence persists even for small quantum spin values (S=1), where a semiclassical approximation is not applicable. Conversely, for the participation ratio, which characterizes the initial state spread in the many-body Hilbert space and which lacks a classical analog, the relaxation timescale is system-size dependent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信