圆柱尾迹中旗子扑动的Koopman降阶建模与分析。

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Haokui Jiang, Jean-Lou Pfister, Daniel Zhengyu Huang, Shunxiang Cao
{"title":"圆柱尾迹中旗子扑动的Koopman降阶建模与分析。","authors":"Haokui Jiang, Jean-Lou Pfister, Daniel Zhengyu Huang, Shunxiang Cao","doi":"10.1103/PhysRevE.111.045101","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a Koopman reduced-order model (ROM) to analyze the instability mechanism and predict the hydrodynamic behavior for the flag flapping in the wake of a cylinder. The Koopman ROM is constructed using a kernel dynamic mode decomposition method and enhanced through a residual dynamical mode decomposition algorithm, which improves accuracy by identifying and eliminating spurious modes. Our analysis reveals a flow transition from the \"2S\" mode in the periodic phase to the \"2P\" mode in the quasiperiodic phase, with the main Koopman mode M_{1} providing insights into the instability mechanism. In the case of chaotic flapping at a Reynolds number of Re=1200, the Koopman ROM demonstrates high accuracy in predicting the chaotic fluid-structure interaction flow when comparing the fractal dimension d_{c} and the maximum Lyapunov exponent λ_{max} of the true and reconstructed flow. Additionally, we observe similar flag flapping and vortex shedding characteristics in the near-structure region throughout the investigated Reynolds number range Re∈[500,1200], leading to similar vorticity patterns for M_{1}. The flag flapping has a local minimum displacement at position x_{0}≈3.0 in the flag's displacement envelope. Notably, this position closely matches the critical position x_{c} obtained from global linear instability analysis at low Reynolds numbers. This conclusion aligns with the performance of the Koopman ROM using sparse measurement probes attached to the flag. The position of the probes influences the accuracy of the ROM, where higher accuracy corresponds to a larger displacement of the eigenfunction.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 4-2","pages":"045101"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Koopman reduced-order modeling and analysis of flag flapping in the wake of a cylinder.\",\"authors\":\"Haokui Jiang, Jean-Lou Pfister, Daniel Zhengyu Huang, Shunxiang Cao\",\"doi\":\"10.1103/PhysRevE.111.045101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We develop a Koopman reduced-order model (ROM) to analyze the instability mechanism and predict the hydrodynamic behavior for the flag flapping in the wake of a cylinder. The Koopman ROM is constructed using a kernel dynamic mode decomposition method and enhanced through a residual dynamical mode decomposition algorithm, which improves accuracy by identifying and eliminating spurious modes. Our analysis reveals a flow transition from the \\\"2S\\\" mode in the periodic phase to the \\\"2P\\\" mode in the quasiperiodic phase, with the main Koopman mode M_{1} providing insights into the instability mechanism. In the case of chaotic flapping at a Reynolds number of Re=1200, the Koopman ROM demonstrates high accuracy in predicting the chaotic fluid-structure interaction flow when comparing the fractal dimension d_{c} and the maximum Lyapunov exponent λ_{max} of the true and reconstructed flow. Additionally, we observe similar flag flapping and vortex shedding characteristics in the near-structure region throughout the investigated Reynolds number range Re∈[500,1200], leading to similar vorticity patterns for M_{1}. The flag flapping has a local minimum displacement at position x_{0}≈3.0 in the flag's displacement envelope. Notably, this position closely matches the critical position x_{c} obtained from global linear instability analysis at low Reynolds numbers. This conclusion aligns with the performance of the Koopman ROM using sparse measurement probes attached to the flag. The position of the probes influences the accuracy of the ROM, where higher accuracy corresponds to a larger displacement of the eigenfunction.</p>\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"111 4-2\",\"pages\":\"045101\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.111.045101\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.045101","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

建立了一种Koopman降阶模型(ROM)来分析旗杆尾迹的失稳机理,并对旗杆尾迹的水动力特性进行了预测。采用核动态模态分解方法构造Koopman ROM,并通过残差动态模态分解算法进行增强,通过识别和消除杂散模态来提高精度。我们的分析揭示了从周期阶段的“2S”模式到准周期阶段的“2P”模式的流动转变,其中主要的Koopman模式M_{1}提供了不稳定机制的见解。在雷诺数Re=1200的混沌扑动情况下,通过对真实流场和重建流场的分形维数d_{c}和最大Lyapunov指数λ_{max}的比较,证明了Koopman ROM对混沌流固相互作用流场的预测精度较高。此外,在整个研究的雷诺数范围Re∈[500,1200]中,我们观察到在近结构区域有相似的flag扑动和涡脱落特征,导致M_{1}有相似的涡度模式。旗子扑动在旗子位移包络中的位置x_{0}≈3.0处具有局部最小位移。值得注意的是,该位置与低雷诺数下全局线性不稳定性分析得到的临界位置x_{c}非常吻合。这个结论与使用附着在标记上的稀疏测量探针的Koopman ROM的性能一致。探针的位置影响ROM的精度,其中更高的精度对应于更大的特征函数位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Koopman reduced-order modeling and analysis of flag flapping in the wake of a cylinder.

We develop a Koopman reduced-order model (ROM) to analyze the instability mechanism and predict the hydrodynamic behavior for the flag flapping in the wake of a cylinder. The Koopman ROM is constructed using a kernel dynamic mode decomposition method and enhanced through a residual dynamical mode decomposition algorithm, which improves accuracy by identifying and eliminating spurious modes. Our analysis reveals a flow transition from the "2S" mode in the periodic phase to the "2P" mode in the quasiperiodic phase, with the main Koopman mode M_{1} providing insights into the instability mechanism. In the case of chaotic flapping at a Reynolds number of Re=1200, the Koopman ROM demonstrates high accuracy in predicting the chaotic fluid-structure interaction flow when comparing the fractal dimension d_{c} and the maximum Lyapunov exponent λ_{max} of the true and reconstructed flow. Additionally, we observe similar flag flapping and vortex shedding characteristics in the near-structure region throughout the investigated Reynolds number range Re∈[500,1200], leading to similar vorticity patterns for M_{1}. The flag flapping has a local minimum displacement at position x_{0}≈3.0 in the flag's displacement envelope. Notably, this position closely matches the critical position x_{c} obtained from global linear instability analysis at low Reynolds numbers. This conclusion aligns with the performance of the Koopman ROM using sparse measurement probes attached to the flag. The position of the probes influences the accuracy of the ROM, where higher accuracy corresponds to a larger displacement of the eigenfunction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信