Hopfield-Kuramoto模型中的脑波动力学。

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Ruwei Yao, Yichao Li, Xintong Yao, Kang Wang, Jingling Qu, Xiaolong Zou, Bo Hong
{"title":"Hopfield-Kuramoto模型中的脑波动力学。","authors":"Ruwei Yao, Yichao Li, Xintong Yao, Kang Wang, Jingling Qu, Xiaolong Zou, Bo Hong","doi":"10.1103/PhysRevE.111.044310","DOIUrl":null,"url":null,"abstract":"<p><p>Whole brain neural oscillation activities exhibit multiple wave phase patterns and seem to be supported by the common circuit network structure. We proposed a Hopfield Kuramoto model based entirely on heterogeneous connectivity strength rather than phase delay. Multiple wave phase patterns can be encoded in heterogeneous connectivity networks via Hebbian rule and retrieved as attractors. We systematically investigated how the model dynamic landscape influenced by attractors and their corresponding eigenvalues, as well as how to control the stability of equilibrium points and the occurrence of high dimensional bifurcations. This framework enables us to reproduce the dominant wave activity components in human brain functional MRI signal, and provides a canonical model for the multi-body physical system spatio-temporal pattern attractor dynamics.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 4-1","pages":"044310"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain wave dynamics in a Hopfield-Kuramoto model.\",\"authors\":\"Ruwei Yao, Yichao Li, Xintong Yao, Kang Wang, Jingling Qu, Xiaolong Zou, Bo Hong\",\"doi\":\"10.1103/PhysRevE.111.044310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Whole brain neural oscillation activities exhibit multiple wave phase patterns and seem to be supported by the common circuit network structure. We proposed a Hopfield Kuramoto model based entirely on heterogeneous connectivity strength rather than phase delay. Multiple wave phase patterns can be encoded in heterogeneous connectivity networks via Hebbian rule and retrieved as attractors. We systematically investigated how the model dynamic landscape influenced by attractors and their corresponding eigenvalues, as well as how to control the stability of equilibrium points and the occurrence of high dimensional bifurcations. This framework enables us to reproduce the dominant wave activity components in human brain functional MRI signal, and provides a canonical model for the multi-body physical system spatio-temporal pattern attractor dynamics.</p>\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"111 4-1\",\"pages\":\"044310\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.111.044310\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.044310","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

全脑神经振荡活动表现出多波相模式,似乎是由共同的电路网络结构支持的。我们提出了一个完全基于异构连接强度而不是相位延迟的Hopfield Kuramoto模型。利用Hebbian规则对异构连接网络中的多个波相模式进行编码,并将其作为吸引子进行检索。系统地研究了吸引子及其相应特征值对模型动态景观的影响,以及如何控制平衡点的稳定性和高维分岔的发生。该框架使我们能够重现人脑功能MRI信号中的主要波活动成分,并为多体物理系统时空模式吸引子动力学提供了一个规范模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain wave dynamics in a Hopfield-Kuramoto model.

Whole brain neural oscillation activities exhibit multiple wave phase patterns and seem to be supported by the common circuit network structure. We proposed a Hopfield Kuramoto model based entirely on heterogeneous connectivity strength rather than phase delay. Multiple wave phase patterns can be encoded in heterogeneous connectivity networks via Hebbian rule and retrieved as attractors. We systematically investigated how the model dynamic landscape influenced by attractors and their corresponding eigenvalues, as well as how to control the stability of equilibrium points and the occurrence of high dimensional bifurcations. This framework enables us to reproduce the dominant wave activity components in human brain functional MRI signal, and provides a canonical model for the multi-body physical system spatio-temporal pattern attractor dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信