介观化学均匀性设计的基于batio3的多晶弛豫铁电体的优越电容储能。

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Aiwen Xie, Ziyi Yu, Junwei Lei, Yi Zhang, Ao Tian, Xuewen Jiang, Xinchun Xie, Yuewei Yin, Zhenqian Fu, Xiaoguang Li, Ruzhong Zuo
{"title":"介观化学均匀性设计的基于batio3的多晶弛豫铁电体的优越电容储能。","authors":"Aiwen Xie, Ziyi Yu, Junwei Lei, Yi Zhang, Ao Tian, Xuewen Jiang, Xinchun Xie, Yuewei Yin, Zhenqian Fu, Xiaoguang Li, Ruzhong Zuo","doi":"10.1002/advs.202502916","DOIUrl":null,"url":null,"abstract":"<p><p>Relaxor ferroelectrics exhibit giant potentials in capacitive energy storage, however, the scales of polar nanoregions determine the critical field values where the polarization saturation occurs. In this work, a mesoscopic structure engineered ergodic relaxor state is realized by adjusting submicron-grain scaled chemical homogenity, exhibiting polymorphic polar nanoregions of various scales in different grains. This produces a relatively continuous polarization switching with increasing the applied electric field from diverse grains, thus resulting in a linear-like polarization response feature. As a result, both a giant energy density (W<sub>rec</sub>) ≈15.4 J cm<sup>-3</sup> and a field-insensitive ultrahigh efficiency (η) ≈93.2% are simultaneously achieved at 78 kV mm<sup>-1</sup> in (Ba, Ca)(Ti, Zr)O<sub>3</sub>-(Bi<sub>0.5</sub>Na<sub>0.5</sub>)SnO<sub>3</sub> lead-free ceramics. Moreover, both the mesoscopic structure heterogeneity and complex high internal stresses in ultrafine grains decrease the temperature sensitivity of the nanodomain structural features. Together with the suppressed high-temperature defect motion from high ceramic density and submicron grain size, a record-high temperature stability with W<sub>rec</sub> = 10.4±5% J cm<sup>-3</sup> and η = 96±3% is obtained at 65 kV mm<sup>-1</sup> and 0-250 °C, demonstrating great application potential of the studied ceramic in high-temperature energy storage capacitors. The proposed strategy in this work greatly expands the design mentality for next-generation high-performance energy-storage dielectrics.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2502916"},"PeriodicalIF":14.3000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superior Capacitive Energy Storage of BaTiO<sub>3</sub>-Based Polymorphic Relaxor Ferroelectrics Engineered by Mesoscopically Chemical Homogeneity.\",\"authors\":\"Aiwen Xie, Ziyi Yu, Junwei Lei, Yi Zhang, Ao Tian, Xuewen Jiang, Xinchun Xie, Yuewei Yin, Zhenqian Fu, Xiaoguang Li, Ruzhong Zuo\",\"doi\":\"10.1002/advs.202502916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Relaxor ferroelectrics exhibit giant potentials in capacitive energy storage, however, the scales of polar nanoregions determine the critical field values where the polarization saturation occurs. In this work, a mesoscopic structure engineered ergodic relaxor state is realized by adjusting submicron-grain scaled chemical homogenity, exhibiting polymorphic polar nanoregions of various scales in different grains. This produces a relatively continuous polarization switching with increasing the applied electric field from diverse grains, thus resulting in a linear-like polarization response feature. As a result, both a giant energy density (W<sub>rec</sub>) ≈15.4 J cm<sup>-3</sup> and a field-insensitive ultrahigh efficiency (η) ≈93.2% are simultaneously achieved at 78 kV mm<sup>-1</sup> in (Ba, Ca)(Ti, Zr)O<sub>3</sub>-(Bi<sub>0.5</sub>Na<sub>0.5</sub>)SnO<sub>3</sub> lead-free ceramics. Moreover, both the mesoscopic structure heterogeneity and complex high internal stresses in ultrafine grains decrease the temperature sensitivity of the nanodomain structural features. Together with the suppressed high-temperature defect motion from high ceramic density and submicron grain size, a record-high temperature stability with W<sub>rec</sub> = 10.4±5% J cm<sup>-3</sup> and η = 96±3% is obtained at 65 kV mm<sup>-1</sup> and 0-250 °C, demonstrating great application potential of the studied ceramic in high-temperature energy storage capacitors. The proposed strategy in this work greatly expands the design mentality for next-generation high-performance energy-storage dielectrics.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2502916\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202502916\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202502916","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

弛豫铁电体在电容储能中表现出巨大的潜力,然而,极性纳米区域的尺度决定了极化饱和发生的临界场值。本研究通过调节亚微米尺度的化学均匀性,实现了一种介观结构工程遍历弛豫态,在不同的晶粒中表现出不同尺度的多晶极性纳米区。随着不同晶粒外加电场的增大,产生相对连续的极化开关,从而产生类似线性的极化响应特征。结果表明,在78 kV mm-1的(Ba, Ca)(Ti, Zr)O3-(Bi0.5Na0.5)SnO3无铅陶瓷中,可以同时获得巨大的能量密度(Wrec)≈15.4 J cm-3和场不敏感的超高效率(η)≈93.2%。此外,超细晶粒的介观结构非均匀性和复杂的高内应力降低了纳米畴结构特征的温度敏感性。由于高陶瓷密度和亚微米晶粒尺寸抑制了高温缺陷运动,在65 kV mm-1和0-250℃下获得了创纪录的高温稳定性,Wrec = 10.4±5% J cm-3, η = 96±3%,显示了所研究的陶瓷在高温储能电容器中的巨大应用潜力。这项工作提出的策略极大地扩展了下一代高性能储能电介质的设计思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superior Capacitive Energy Storage of BaTiO3-Based Polymorphic Relaxor Ferroelectrics Engineered by Mesoscopically Chemical Homogeneity.

Relaxor ferroelectrics exhibit giant potentials in capacitive energy storage, however, the scales of polar nanoregions determine the critical field values where the polarization saturation occurs. In this work, a mesoscopic structure engineered ergodic relaxor state is realized by adjusting submicron-grain scaled chemical homogenity, exhibiting polymorphic polar nanoregions of various scales in different grains. This produces a relatively continuous polarization switching with increasing the applied electric field from diverse grains, thus resulting in a linear-like polarization response feature. As a result, both a giant energy density (Wrec) ≈15.4 J cm-3 and a field-insensitive ultrahigh efficiency (η) ≈93.2% are simultaneously achieved at 78 kV mm-1 in (Ba, Ca)(Ti, Zr)O3-(Bi0.5Na0.5)SnO3 lead-free ceramics. Moreover, both the mesoscopic structure heterogeneity and complex high internal stresses in ultrafine grains decrease the temperature sensitivity of the nanodomain structural features. Together with the suppressed high-temperature defect motion from high ceramic density and submicron grain size, a record-high temperature stability with Wrec = 10.4±5% J cm-3 and η = 96±3% is obtained at 65 kV mm-1 and 0-250 °C, demonstrating great application potential of the studied ceramic in high-temperature energy storage capacitors. The proposed strategy in this work greatly expands the design mentality for next-generation high-performance energy-storage dielectrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信