Lin-Lin Xu, Zhengyuan Zhou, Sascha Schäuble, Wolfgang Vivas, Karen Dlubatz, Michael Bauer, Sebastian Weis, Mervyn Singer, Roman Lukaszewski, Gianni Panagiotou
{"title":"脓毒症早期发病的多组学和器官能量代谢适应研究。","authors":"Lin-Lin Xu, Zhengyuan Zhou, Sascha Schäuble, Wolfgang Vivas, Karen Dlubatz, Michael Bauer, Sebastian Weis, Mervyn Singer, Roman Lukaszewski, Gianni Panagiotou","doi":"10.1002/advs.202504418","DOIUrl":null,"url":null,"abstract":"<p><p>Systemic metabolic dysregulation in sepsis critically impacts patient survival. To better understand its onset, untargeted serum metabolomics and lipidomics are analyzed from 152 presymptomatic patients undergoing major elective surgery, and identified key metabolites, including serine and aminoadipic acid, that differentiate postoperative uncomplicated infection from sepsis. Using single-nucleus RNA sequencing data from an in vivo mouse model of sepsis, tissue-independent down-regulation and tissue-specific differences of serine and energy-related genes including key module roles for the mitochondria-linked genes, Cox4i1, Cox8a, and Ndufa4 are identified. Finally, serine-dependent metabolic shifts, especially in the liver, are revealed by using <sup>12</sup>C/<sup>13</sup>C murine data with labeled serine, and link altered activity of the serine hydroxymethyltransferase (SHMT) cycle with perturbed purine metabolism during sepsis. This study demonstrates the close interrelationship between early metabolite changes and mitochondrial dysfunction in sepsis, improves the understanding of the underlying pathophysiology, and highlights metabolic targets to prospectively treat presymptomatic, but at-risk, patients.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e04418"},"PeriodicalIF":14.3000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Omics and -Organ Insights into Energy Metabolic Adaptations in Early Sepsis Onset.\",\"authors\":\"Lin-Lin Xu, Zhengyuan Zhou, Sascha Schäuble, Wolfgang Vivas, Karen Dlubatz, Michael Bauer, Sebastian Weis, Mervyn Singer, Roman Lukaszewski, Gianni Panagiotou\",\"doi\":\"10.1002/advs.202504418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Systemic metabolic dysregulation in sepsis critically impacts patient survival. To better understand its onset, untargeted serum metabolomics and lipidomics are analyzed from 152 presymptomatic patients undergoing major elective surgery, and identified key metabolites, including serine and aminoadipic acid, that differentiate postoperative uncomplicated infection from sepsis. Using single-nucleus RNA sequencing data from an in vivo mouse model of sepsis, tissue-independent down-regulation and tissue-specific differences of serine and energy-related genes including key module roles for the mitochondria-linked genes, Cox4i1, Cox8a, and Ndufa4 are identified. Finally, serine-dependent metabolic shifts, especially in the liver, are revealed by using <sup>12</sup>C/<sup>13</sup>C murine data with labeled serine, and link altered activity of the serine hydroxymethyltransferase (SHMT) cycle with perturbed purine metabolism during sepsis. This study demonstrates the close interrelationship between early metabolite changes and mitochondrial dysfunction in sepsis, improves the understanding of the underlying pathophysiology, and highlights metabolic targets to prospectively treat presymptomatic, but at-risk, patients.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e04418\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202504418\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202504418","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-Omics and -Organ Insights into Energy Metabolic Adaptations in Early Sepsis Onset.
Systemic metabolic dysregulation in sepsis critically impacts patient survival. To better understand its onset, untargeted serum metabolomics and lipidomics are analyzed from 152 presymptomatic patients undergoing major elective surgery, and identified key metabolites, including serine and aminoadipic acid, that differentiate postoperative uncomplicated infection from sepsis. Using single-nucleus RNA sequencing data from an in vivo mouse model of sepsis, tissue-independent down-regulation and tissue-specific differences of serine and energy-related genes including key module roles for the mitochondria-linked genes, Cox4i1, Cox8a, and Ndufa4 are identified. Finally, serine-dependent metabolic shifts, especially in the liver, are revealed by using 12C/13C murine data with labeled serine, and link altered activity of the serine hydroxymethyltransferase (SHMT) cycle with perturbed purine metabolism during sepsis. This study demonstrates the close interrelationship between early metabolite changes and mitochondrial dysfunction in sepsis, improves the understanding of the underlying pathophysiology, and highlights metabolic targets to prospectively treat presymptomatic, but at-risk, patients.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.