{"title":"deepTFBS:利用深度多任务和迁移学习改进转录因子结合的物种内和物种间预测。","authors":"Jingjing Zhai, Yuzhou Zhang, Chujun Zhang, Xiaotong Yin, Minggui Song, Chenglong Tang, Pengjun Ding, Zenglin Li, Chuang Ma","doi":"10.1002/advs.202503135","DOIUrl":null,"url":null,"abstract":"<p><p>The precise prediction of transcription factor binding sites (TFBSs) is crucial in understanding gene regulation. In this study, deepTFBS, a comprehensive deep learning (DL) framework that builds a robust DNA language model of TF binding grammar for accurately predicting TFBSs within and across plant species is presented. Taking advantages of multi-task DL and transfer learning, deepTFBS is capable of leveraging the knowledge learned from large-scale TF binding profiles to enhance the prediction of TFBSs under small-sample training and cross-species prediction tasks. When tested using available information on 359 Arabidopsis TFs, deepTFBS outperformed previously described prediction strategies, including position weight matrix, deepSEA and DanQ, with a 244.49%, 49.15%, and 23.32% improvement of the area under the precision-recall curve (PRAUC), respectively. Further cross-species prediction of TFBS in wheat showed that deepTFBS yielded a significant PRAUC improvement of 30.6% over these three baseline models. deepTFBS can also utilize information from gene conservation and binding motifs, enabling efficient TFBS prediction in species where experimental data availability is limited. A case study, focusing on the WUSCHEL (WUS) transcription factor, illustrated the potential use of deepTFBS in cross-species applications, in our example between Arabidopsis and wheat. deepTFBS is publically available at https://github.com/cma2015/deepTFBS.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e03135"},"PeriodicalIF":14.3000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"deepTFBS: Improving within- and Cross-Species Prediction of Transcription Factor Binding Using Deep Multi-Task and Transfer Learning.\",\"authors\":\"Jingjing Zhai, Yuzhou Zhang, Chujun Zhang, Xiaotong Yin, Minggui Song, Chenglong Tang, Pengjun Ding, Zenglin Li, Chuang Ma\",\"doi\":\"10.1002/advs.202503135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The precise prediction of transcription factor binding sites (TFBSs) is crucial in understanding gene regulation. In this study, deepTFBS, a comprehensive deep learning (DL) framework that builds a robust DNA language model of TF binding grammar for accurately predicting TFBSs within and across plant species is presented. Taking advantages of multi-task DL and transfer learning, deepTFBS is capable of leveraging the knowledge learned from large-scale TF binding profiles to enhance the prediction of TFBSs under small-sample training and cross-species prediction tasks. When tested using available information on 359 Arabidopsis TFs, deepTFBS outperformed previously described prediction strategies, including position weight matrix, deepSEA and DanQ, with a 244.49%, 49.15%, and 23.32% improvement of the area under the precision-recall curve (PRAUC), respectively. Further cross-species prediction of TFBS in wheat showed that deepTFBS yielded a significant PRAUC improvement of 30.6% over these three baseline models. deepTFBS can also utilize information from gene conservation and binding motifs, enabling efficient TFBS prediction in species where experimental data availability is limited. A case study, focusing on the WUSCHEL (WUS) transcription factor, illustrated the potential use of deepTFBS in cross-species applications, in our example between Arabidopsis and wheat. deepTFBS is publically available at https://github.com/cma2015/deepTFBS.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e03135\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202503135\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202503135","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
deepTFBS: Improving within- and Cross-Species Prediction of Transcription Factor Binding Using Deep Multi-Task and Transfer Learning.
The precise prediction of transcription factor binding sites (TFBSs) is crucial in understanding gene regulation. In this study, deepTFBS, a comprehensive deep learning (DL) framework that builds a robust DNA language model of TF binding grammar for accurately predicting TFBSs within and across plant species is presented. Taking advantages of multi-task DL and transfer learning, deepTFBS is capable of leveraging the knowledge learned from large-scale TF binding profiles to enhance the prediction of TFBSs under small-sample training and cross-species prediction tasks. When tested using available information on 359 Arabidopsis TFs, deepTFBS outperformed previously described prediction strategies, including position weight matrix, deepSEA and DanQ, with a 244.49%, 49.15%, and 23.32% improvement of the area under the precision-recall curve (PRAUC), respectively. Further cross-species prediction of TFBS in wheat showed that deepTFBS yielded a significant PRAUC improvement of 30.6% over these three baseline models. deepTFBS can also utilize information from gene conservation and binding motifs, enabling efficient TFBS prediction in species where experimental data availability is limited. A case study, focusing on the WUSCHEL (WUS) transcription factor, illustrated the potential use of deepTFBS in cross-species applications, in our example between Arabidopsis and wheat. deepTFBS is publically available at https://github.com/cma2015/deepTFBS.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.