{"title":"真核生物翻译起始因子2相互作用动力学研究。","authors":"Assen Marintchev","doi":"10.1042/BST20253022","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic translation initiation typically involves recruitment of the 43S ribosomal pre-initiation complex (PIC) to the 5'-end of the mRNA to form the 48S PIC, followed by scanning in search of a start codon in a favorable nucleotide complex. The start codon is recognized through base-pairing with the anticodon of the initiator Met-tRNAi. The stringency of start codon selection controls the probability of initiation from a start codon in a suboptimal nucleotide context. Met-tRNAi itself is recruited to the 43S PIC by the eukaryotic translation initiation factor 2 (eIF2), in the form of the eIF2-GTP•Met-tRNAi ternary complex (TC). GTP hydrolysis by eIF2, promoted by its GTPase-activating protein eIF5, leads to the release of eIF2-GDP from the PIC. Recycling of eIF2-GDP to TC is promoted by the guanine nucleotide exchange factor eIF2B. Its inhibition by a number of stress factors triggers the integrated stress response (ISR). This review describes the recent advances in elucidating the interactions of eIF2 and its partners, with an emphasis on the timing and dynamics of their binding to, and release from the PIC. Special attention is given to the regulation of the stringency of start codon selection and the ISR. The discussion is mostly limited to translation initiation in mammals and budding yeast.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the interaction dynamics of eukaryotic translation initiation factor 2.\",\"authors\":\"Assen Marintchev\",\"doi\":\"10.1042/BST20253022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eukaryotic translation initiation typically involves recruitment of the 43S ribosomal pre-initiation complex (PIC) to the 5'-end of the mRNA to form the 48S PIC, followed by scanning in search of a start codon in a favorable nucleotide complex. The start codon is recognized through base-pairing with the anticodon of the initiator Met-tRNAi. The stringency of start codon selection controls the probability of initiation from a start codon in a suboptimal nucleotide context. Met-tRNAi itself is recruited to the 43S PIC by the eukaryotic translation initiation factor 2 (eIF2), in the form of the eIF2-GTP•Met-tRNAi ternary complex (TC). GTP hydrolysis by eIF2, promoted by its GTPase-activating protein eIF5, leads to the release of eIF2-GDP from the PIC. Recycling of eIF2-GDP to TC is promoted by the guanine nucleotide exchange factor eIF2B. Its inhibition by a number of stress factors triggers the integrated stress response (ISR). This review describes the recent advances in elucidating the interactions of eIF2 and its partners, with an emphasis on the timing and dynamics of their binding to, and release from the PIC. Special attention is given to the regulation of the stringency of start codon selection and the ISR. The discussion is mostly limited to translation initiation in mammals and budding yeast.</p>\",\"PeriodicalId\":8841,\"journal\":{\"name\":\"Biochemical Society transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Society transactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BST20253022\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20253022","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploring the interaction dynamics of eukaryotic translation initiation factor 2.
Eukaryotic translation initiation typically involves recruitment of the 43S ribosomal pre-initiation complex (PIC) to the 5'-end of the mRNA to form the 48S PIC, followed by scanning in search of a start codon in a favorable nucleotide complex. The start codon is recognized through base-pairing with the anticodon of the initiator Met-tRNAi. The stringency of start codon selection controls the probability of initiation from a start codon in a suboptimal nucleotide context. Met-tRNAi itself is recruited to the 43S PIC by the eukaryotic translation initiation factor 2 (eIF2), in the form of the eIF2-GTP•Met-tRNAi ternary complex (TC). GTP hydrolysis by eIF2, promoted by its GTPase-activating protein eIF5, leads to the release of eIF2-GDP from the PIC. Recycling of eIF2-GDP to TC is promoted by the guanine nucleotide exchange factor eIF2B. Its inhibition by a number of stress factors triggers the integrated stress response (ISR). This review describes the recent advances in elucidating the interactions of eIF2 and its partners, with an emphasis on the timing and dynamics of their binding to, and release from the PIC. Special attention is given to the regulation of the stringency of start codon selection and the ISR. The discussion is mostly limited to translation initiation in mammals and budding yeast.
期刊介绍:
Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences.
Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.