{"title":"结肠上皮细胞中依赖ahr诱导的β-防御素1调节肠道微生物群和免疫反应之间的交叉对话,导致结肠炎的衰减。","authors":"Manikandan Palrasu, Amarnath Marudamuthu, Khadija Kakar, Hamida Hamida, Shruthi Thada, Rohan Gupta, Kiesha Wilson, Taylor Carter, Yin Zhong, Archana Saxena, Xiaoming Yang, Narendra Singh, Philip Brandon Busbee, Jie Li, Monica Garcia-Buitrago, Prakash Nagarkatti, Mitzi Nagarkatti","doi":"10.1002/advs.202416324","DOIUrl":null,"url":null,"abstract":"<p><p>The aryl hydrocarbon receptor (AhR) acts as a critical signaling hub that connects immune cells, food and environmental cues, and microbiota to regulate intestinal homeostasis. In the current study, the role of AhR in the regulation of an antimicrobial peptide, β-defensin1 (BD-1) is investigated to control colitis. Human patients with ulcerative colitis (UC) and Crohn's disease (CD), and mice with three different models of colitis, express a significant decrease in the expression of BD-1 in colonic epithelial cells (CECs). Dietary and environmental AhR ligands induce the expression of BD-1 in CECs through the activation of two dioxin-responsive elements (DREs) expressed on its promoter. AhR ligands attenuate colitis in wild-type (WT) mice while inducing BD-1. However, AhR ligands fail to induce BD-1 and protect mice from colitis when there is an intestinal epithelial cell (IEC)-specific deletion of AhR. Blocking BD1 in vivo using antibodies prevents the ability of AhR ligands to ameliorate colitis, restore dysbiosis, and attenuate colonic inflammation. The current study identifies a novel pathway involving dietary, environmental, and endogenous AhR ligands to induce the antimicrobial peptide BD-1 in IECs, which in turn, plays a critical role in the regulation of intestinal homeostasis.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2416324"},"PeriodicalIF":14.3000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AhR-Dependent Induction of β-Defensin 1 in Colonic Epithelial Cells Regulates Cross-Talk between Gut Microbiota and Immune Response Leading to Attenuation of Colitis.\",\"authors\":\"Manikandan Palrasu, Amarnath Marudamuthu, Khadija Kakar, Hamida Hamida, Shruthi Thada, Rohan Gupta, Kiesha Wilson, Taylor Carter, Yin Zhong, Archana Saxena, Xiaoming Yang, Narendra Singh, Philip Brandon Busbee, Jie Li, Monica Garcia-Buitrago, Prakash Nagarkatti, Mitzi Nagarkatti\",\"doi\":\"10.1002/advs.202416324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aryl hydrocarbon receptor (AhR) acts as a critical signaling hub that connects immune cells, food and environmental cues, and microbiota to regulate intestinal homeostasis. In the current study, the role of AhR in the regulation of an antimicrobial peptide, β-defensin1 (BD-1) is investigated to control colitis. Human patients with ulcerative colitis (UC) and Crohn's disease (CD), and mice with three different models of colitis, express a significant decrease in the expression of BD-1 in colonic epithelial cells (CECs). Dietary and environmental AhR ligands induce the expression of BD-1 in CECs through the activation of two dioxin-responsive elements (DREs) expressed on its promoter. AhR ligands attenuate colitis in wild-type (WT) mice while inducing BD-1. However, AhR ligands fail to induce BD-1 and protect mice from colitis when there is an intestinal epithelial cell (IEC)-specific deletion of AhR. Blocking BD1 in vivo using antibodies prevents the ability of AhR ligands to ameliorate colitis, restore dysbiosis, and attenuate colonic inflammation. The current study identifies a novel pathway involving dietary, environmental, and endogenous AhR ligands to induce the antimicrobial peptide BD-1 in IECs, which in turn, plays a critical role in the regulation of intestinal homeostasis.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2416324\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202416324\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202416324","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
AhR-Dependent Induction of β-Defensin 1 in Colonic Epithelial Cells Regulates Cross-Talk between Gut Microbiota and Immune Response Leading to Attenuation of Colitis.
The aryl hydrocarbon receptor (AhR) acts as a critical signaling hub that connects immune cells, food and environmental cues, and microbiota to regulate intestinal homeostasis. In the current study, the role of AhR in the regulation of an antimicrobial peptide, β-defensin1 (BD-1) is investigated to control colitis. Human patients with ulcerative colitis (UC) and Crohn's disease (CD), and mice with three different models of colitis, express a significant decrease in the expression of BD-1 in colonic epithelial cells (CECs). Dietary and environmental AhR ligands induce the expression of BD-1 in CECs through the activation of two dioxin-responsive elements (DREs) expressed on its promoter. AhR ligands attenuate colitis in wild-type (WT) mice while inducing BD-1. However, AhR ligands fail to induce BD-1 and protect mice from colitis when there is an intestinal epithelial cell (IEC)-specific deletion of AhR. Blocking BD1 in vivo using antibodies prevents the ability of AhR ligands to ameliorate colitis, restore dysbiosis, and attenuate colonic inflammation. The current study identifies a novel pathway involving dietary, environmental, and endogenous AhR ligands to induce the antimicrobial peptide BD-1 in IECs, which in turn, plays a critical role in the regulation of intestinal homeostasis.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.