{"title":"辅酶Q10在运动耐量和肌肉力量中的作用。","authors":"Zhenwu Bian, Liu Wei","doi":"10.1080/13813455.2025.2507746","DOIUrl":null,"url":null,"abstract":"<p><p><b>Context</b>: Coenzyme Q10 (CoQ10) is a vital compound found in nearly all cells, and in mitochondria, it facilitates ATP production, and its reduced form acts as a powerful antioxidant, neutralizing reactive oxygen species (ROS) and preventing oxidative damage. Notably, during intense or endurance exercise, the body's increased energy demands and ROS production can lead to oxidative stress, muscle fatigue, inflammation, and exercise-induced muscle damage (EIMD).</p><p><p><b>Objectives</b>: This review will explore the mechanisms of CoQ10, its impact on exercise performance to be addressed.</p><p><p><b>Results</b>: CoQ10 has been shown to counteract these effects by supporting mitochondrial function, cell membranes, and reducing ROS. Research has demonstrated that CoQ10 supplementation lowers lipid peroxidation, reduces muscle damage indicators like creatine kinase (CK), lactate dehydrogenase (LDH-5 or LDH M), and myoglobin (Mb), and accelerates recovery from EIMD. Nevertheless, the impact of CoQ10 on performance has varied depending on factors such as dosage, duration, exercise type, and individual characteristics.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"1-20"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of coenzyme Q10 in exercise tolerance and muscle strength.\",\"authors\":\"Zhenwu Bian, Liu Wei\",\"doi\":\"10.1080/13813455.2025.2507746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Context</b>: Coenzyme Q10 (CoQ10) is a vital compound found in nearly all cells, and in mitochondria, it facilitates ATP production, and its reduced form acts as a powerful antioxidant, neutralizing reactive oxygen species (ROS) and preventing oxidative damage. Notably, during intense or endurance exercise, the body's increased energy demands and ROS production can lead to oxidative stress, muscle fatigue, inflammation, and exercise-induced muscle damage (EIMD).</p><p><p><b>Objectives</b>: This review will explore the mechanisms of CoQ10, its impact on exercise performance to be addressed.</p><p><p><b>Results</b>: CoQ10 has been shown to counteract these effects by supporting mitochondrial function, cell membranes, and reducing ROS. Research has demonstrated that CoQ10 supplementation lowers lipid peroxidation, reduces muscle damage indicators like creatine kinase (CK), lactate dehydrogenase (LDH-5 or LDH M), and myoglobin (Mb), and accelerates recovery from EIMD. Nevertheless, the impact of CoQ10 on performance has varied depending on factors such as dosage, duration, exercise type, and individual characteristics.</p>\",\"PeriodicalId\":8331,\"journal\":{\"name\":\"Archives of Physiology and Biochemistry\",\"volume\":\" \",\"pages\":\"1-20\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Physiology and Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13813455.2025.2507746\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2025.2507746","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
The role of coenzyme Q10 in exercise tolerance and muscle strength.
Context: Coenzyme Q10 (CoQ10) is a vital compound found in nearly all cells, and in mitochondria, it facilitates ATP production, and its reduced form acts as a powerful antioxidant, neutralizing reactive oxygen species (ROS) and preventing oxidative damage. Notably, during intense or endurance exercise, the body's increased energy demands and ROS production can lead to oxidative stress, muscle fatigue, inflammation, and exercise-induced muscle damage (EIMD).
Objectives: This review will explore the mechanisms of CoQ10, its impact on exercise performance to be addressed.
Results: CoQ10 has been shown to counteract these effects by supporting mitochondrial function, cell membranes, and reducing ROS. Research has demonstrated that CoQ10 supplementation lowers lipid peroxidation, reduces muscle damage indicators like creatine kinase (CK), lactate dehydrogenase (LDH-5 or LDH M), and myoglobin (Mb), and accelerates recovery from EIMD. Nevertheless, the impact of CoQ10 on performance has varied depending on factors such as dosage, duration, exercise type, and individual characteristics.
期刊介绍:
Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders.
The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications.
Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics:
-Dysregulation of hormone receptors and signal transduction
-Contribution of gene variants and gene regulatory processes
-Impairment of intermediary metabolism at the cellular level
-Secretion and metabolism of peptides and other factors that mediate cellular crosstalk
-Therapeutic strategies for managing metabolic diseases
Special issues dedicated to topics in the field will be published regularly.